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This article demonstrates how numerical methods for atmospheric models can
be validated by showing that they give the theoretically predicted rate of con-
vergence to relevant asymptotic limit solutions. This procedure is necessary
because the exact solution of the Navier–Stokes equations cannot be resolved
by production models. The limit solutions chosen are those most important
for weather and climate prediction. While the best numerical algorithms for
this purpose largely reflect current practice, some important limit solutions
cannot be captured by existing methods. The use of Lagrangian rather than
Eulerian averaging may be required in these cases.
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1. Introduction

This article is a review of the mathematical basis of the numerical meth-
ods used in production atmosphere models. Many of the results can also
be applied to ocean models. A recent review of ocean modelling issues is
given by Higdon (2006). Atmospheric models are routinely used in weather
prediction for time-scales of a few hours up to a few seasons, and for
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climate predictions for hundreds of years ahead. These predictions require
modelling not just of the atmosphere, but also of the ocean and the rest of
the ‘Earth system’ such as the vegetation. They also require modelling of
the interactions between the atmosphere, ocean and land surface. This is
difficult because of the very different time-scales of the separate systems.

In atmospheric predictions, the state of the system at an initial time has
to be determined from observations. The techniques used are usually called
‘data assimilation’, where information from new observations is blended
with a first guess computed from observations made at previous times. The
data assimilation problem is not discussed in this article. A good introduc-
tion is given in Kalnay (2003). However, knowledge of the dynamics of the
system is very important in data assimilation, and some discussion of how
the knowledge is used is given. In addition, modern data assimilation meth-
ods such as ‘four-dimensional variational data assimilation’ (see Courtier,
Thépaut and Hollingsworth (1994)) require a model trajectory to be fitted
to the observations. Practical ways of doing this require a linearization of
the numerical algorithm used in the model, together with an adjoint. The
ability to create an accurate linearization of the numerical method used
in the nonlinear model is thus important, and is discussed in the article.
However, there are many other numerical issues associated with the data
assimilation problem which are not discussed.

In production atmosphere models, the affordable resolutions are many
orders of magnitude coarser than those required to solve the equations ac-
curately. As discussed in Section 2.2, this would require a grid-length of the
order of 1 mm. In practice, the equations are averaged in space and time,
and thus depend on implicit or explicit sub-grid modelling assumptions.
The problem is therefore to show that the numerical solution stays close
to the averaged solution. It is, of course, not possible to write down a set
of equations which describe the averaged behaviour exactly; and it is also
not possible to estimate the difference between the solution of the averaged
equations and the average of the true solution.

The article concentrates on numerical methods for the averaged equations
governing the atmosphere, rather than the choice of sub-grid models. The
choice of averaging methods and the design of sub-grid models are very large
subjects, and exploit detailed observational and modelling studies of the
small-scale behaviour. Only those issues which cannot be separated from the
design of numerical methods are discussed. Some more information about
this very diverse subject is given in Garratt (1992) and Smith (1997). The
atmospheric circulation is forced directly by radiation and indirectly through
boundary fluxes. The effects of phase changes involving water vapour is very
important. In this article, we assume very simple representations of these
processes. In production models, a large proportion of the computer code
and execution time is spent on modelling them.
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The ideal in a mathematical analysis of the numerical methods used in
prediction models is to prove that the numerical solution stays close to the
exact solution for large times. While this can be attempted if the sub-grid
model is assumed to be exact, such estimates are of limited use because of
the unknown error of the sub-grid model itself. It is therefore more useful
to analyse the accuracy of the approximation to asymptotic limit solutions
of the governing equations, whose accuracy is known and which can be well
represented using the space- and time-averaging scales that can be afforded.
This is the method used in this article. Production numerical models can
describe a large variety of asymptotic regimes of the governing equations;
and ideally it is necessary to demonstrate the accuracy of the numerical
method in all of them. In practice only the most important regimes are
considered.

While this article describes how to optimize numerical methods for the
most important regimes being modelled; this is only one aspect of the sub-
ject of numerical methods for the atmosphere. More comprehensive descrip-
tions of other aspects of the subject can be found in Durran (1998).

In Section 2 we introduce some of the most important asymptotic regimes
and discuss their properties relevant to numerical approximation. In Sec-
tion 3, we discuss the properties of numerical methods in representing
these regimes with reference to methods used in current operational mod-
els. In Section 4, we illustrate these procedures using the Met Office Unified
Model. We demonstrate that the numerical solutions converge to solutions
of asymptotic limit equations appropriate to large scales in three cases which
are simple enough for accurate numerical solutions to be possible, but still
physically relevant. We also demonstrate that the solutions converge to
asymptotic limit solutions governing smaller-scale behaviour.

2. Asymptotic limits of the equations of motion

2.1. Basic equations

The starting point is that the atmosphere can be regarded as a fluid contin-
uum which obeys the basic physical laws of dynamics and thermodynamics.
The study of fluid dynamics recognizes that fluids exhibit a wide range of
different behaviour under different circumstances. These are characterized
as asymptotic regimes by identifying dimensionless parameters that control
the flow, and choosing appropriate ranges of values of these parameters. A
comprehensive survey is given in Batchelor (1967).

A number of simplifying assumptions are universally made when mod-
elling the atmosphere. Current research is exploring whether some of these
should be relaxed as the availability of more powerful computers enables
more accurate solutions. A more detailed account of these issues is given in
White (2002).
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The Earth is assumed to rotate with angular velocity Ω on an axis through
the coordinate poles. The acceleration due to gravity and the centrifugal
acceleration due to the Earth’s rotation are combined, and act normally to
geopotential surfaces. The geopotential surfaces are then approximated by
spherical surfaces. The equations are defined in spherical polar coordinates
(λ, φ, r), with origin at the centre of the Earth. The Earth’s surface is then
assumed to be a spherical surface with radius a with perturbations due
to orography. It is defined by the equation r = r0(λ, φ). The combined
gravitational and centrifugal acceleration are assumed to be towards the
origin, with a constant magnitude g.

The atmosphere is assumed to consist of a compressible ideal gas with
pressure, density and temperature p, ρ, T which are functions of position
and time. It contains a mixing ratio q of water vapour. It moves with a
vector velocity u = (u, v, w). The evolution is described by the compressible
Navier–Stokes equations, the first law of thermodynamics and the equation
of state for an ideal gas, all written in a frame of reference rotating with the
Earth’s angular velocity. These are

Du

Dt
+ 2Ω × u +

1

ρ
∇p + gr̂ = ν∇2u +

1

3
ν∇(∇ · u),

∂ρ

∂t
+ ∇ · (ρu) = 0,

Cv
DT

Dt
− RT

ρ

Dρ

Dt
= κh∇2T + Sh + LP, (2.1)

Dq

Dt
= κq∇2q + Sq − P,

p = ρRT.

Here the Lagrangian derivative D/Dt is a shorthand for ∂/∂t + u · ∇ and
r̂ is a unit vector in the radial direction. R is the gas constant and Cv

the specific heat of air at constant volume. ν is the kinematic viscosity.
All of these are assumed constant. Sh and Sq are the total heat and mois-
ture sources. P is the rate of conversion of water vapour to liquid water
or ice, with L the associated latent heat. ρκh and κq are the thermal con-
ductivity and moisture diffusivity, also assumed constant. In production
atmospheric modelling the thermodynamic parameters are allowed to be
functions of atmospheric composition. The true viscosity and thermal con-
ductivity are invariably superseded by sub-grid models. The representation
of phase changes and forcing terms is very complex, but only the leading
order effects will be discussed in this article.

These equations form a system of seven equations for the unknowns
(u, p, ρ, T, q). The obvious physical boundary conditions are that u = 0
at r = r0 and that p, ρ → 0 as r → ∞. While the no-slip condition at
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the Earth’s surface is standard, the issue of the correct mathematical upper
boundary condition for an unbounded atmosphere is open. Fluxes of heat
and moisture are specified at the lower boundary. Fluxes of momentum are
discussed in the next section.

Suppose there are no dissipation and source terms, so that the right-hand
side terms of the first four equations of (2.1) vanish. Solve equations (2.1)
in a closed time-independent region Γ with boundary conditions u · n = 0,
where n is a vector pointing outward from the boundary. Then the energy
integral

E =

∫

Γ
ρ

(

1

2
(u2 + v2 + w2) + CvT + gr

)

r2 cos φdλ dφdr (2.2)

is conserved. The requirement that the upper boundary be rigid can be
removed most conveniently, while retaining energy and angular momentum
conservation, by reformulating the equations in ‘mass’ coordinates (Wood
and Staniforth 2003).

It is convenient to rewrite the first law of thermodynamics in terms of the
potential temperature θ = T (p/pref)

−R/Cp ≡ T/Π, where Cp is the specific
heat of air at constant pressure, pref is a constant reference pressure equal
to a typical pressure at the Earth’s surface, and Π is the Exner pressure.
This gives, noting R = Cp − Cv,

Dθ

Dt
=

1

CpΠ
(κh∇2T + Sh + LP ). (2.3)

This form of the equation is particularly useful in situations where the right-
hand side terms can be neglected. The equation of state can now be rewrit-
ten as

prefΠ
1

γ−1 = ρRθ (2.4)

where γ = Cp/Cv.
We can also rewrite the momentum equations by using the definition of θ

and the equation of state (the last equation of (2.1)). After some algebraic
manipulations we obtain

Du

Dt
+ 2Ω × u + Cpθ∇Π + gr̂ = ν∇2u +

1

3
ν∇(∇ · u). (2.5)

In the absence of dissipation and source terms, equations (2.1) imply a
conservation law for the Ertel potential vorticity

Q =
1

ρ
(∇× u + 2Ω) · ∇θ (2.6)

in the form
DQ

Dt
= 0. (2.7)
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2.2. Methods of averaging

As noted in the Introduction, the equations have to be averaged before they
are solved numerically. This article only discusses a few of the key issues
in the choice of averaging method. A much fuller discussion is given by
Ferziger (1998). The averaging is much coarser than that which is usual in
large eddy modelling. The kinematic viscosity of air is about 10−5 m2 s−1

near the Earth’s surface. The resolution required for a direct numerical
simulation has to be chosen to make the Reynolds number based on the grid-
length O(1). This is difficult to estimate. An estimate based on dissipation
rates given by Gill (1982, p. 79) gives a resolution of about 1 mm. The
resolution used in even the finest-scale production models is about 1 km.
Thus the averaging has to reduce the resolution required by a factor of 109.
In practice, therefore, the general ideas of turbulence modelling based on
the maintenance of an inertial range have to be supplemented by specialized
sub-grid models, which use additional knowledge about the behaviour of the
atmosphere on scales which cannot be resolved.

The averaging has to be carried out in time as well as space. The ratio
of the space- and time-averaging scales is important. The optimal choice
will depend on the type of motion being modelled, and is quite different
for sound waves and for solutions which move with the flow speed; see
Browning and Kreiss (1994). It is therefore difficult to separate the issue
from the identification of important asymptotic limits, which is discussed
in the following sections.

A basic issue is the choice between Eulerian and Lagrangian averaging.
In principle, the state of the atmosphere can either be described in terms of
space-time averages at particular locations, or in terms of the behaviour of
fluid parcels of a finite size. The latter is very appealing in terms of the ob-
served physics. Descriptive accounts of meteorology often talk in terms
of ‘air-masses’ with particular characteristics. The boundaries between
different air-masses can be quite sharp, and spatial averaging would not
then give satisfactory results. The mathematical theory underlying La-
grangian averaging is set out in Andrews and McIntyre (1978). That paper
illustrates that it is technically much harder to work with than Eulerian
averaging.

The coarseness of the averaging required means that the optimum tech-
nique may well depend on the asymptotic regime being modelled. For
instance, we would expect Eulerian averaging to be appropriate to de-
scribe flow over hills, since the hills are fixed in space. However, Lagran-
gian averaging would be more appropriate for treating moving air-mass
boundaries. In the rest of the article, we therefore discuss the optimum
averaging for particular regimes alongside the discussion of the numeri-
cal method. In particular, it is possible to build the averaging into the
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numerical method, thus obtaining an implicit turbulence model as discussed
in Fureby and Grinstein (2002). However, many production models use an
analytic turbulence model, which is added to the equations.

In designing averaging methods, it is essential to note that the prognos-
tic variables in equations (2.1) are observed to be bounded quantities, and
therefore their space-time averages will be smooth on the averaging scale.
If analytic Eulerian averaging is used to produce modified versions of equa-
tions (2.1), it is essential that their solutions can be proved to be smooth on
the averaging scale. The modified equations will therefore need to include
terms which prevent the growth of unresolvable gradients in the prognos-
tic variables. However, some terms in the governing equations will become
insignificant in the presence of the averaging, and can be removed. Thus
there is never any point in including the real kinematic viscous or thermal
conduction terms. Some other approximations which are often made for
coarser averaging scales are noted in the next section. Alternatively, if im-
plicit Eulerian averaging is included in the numerical methods, it is essential
that the computed solutions vary smoothly on the averaging scale.

A particular issue with the averaging is the treatment of the no-slip
boundary conditions. The real viscous sub-layers are much too thin to
resolve explicitly, even if the vertical grid is stretched to give increased res-
olution near the boundaries. Specialized sub-grid models are therefore used
to represent the momentum fluxes near the boundaries. A review of this
topic can be found in Garratt (1992).

Another issue is the treatment of instabilities which occur in the real
system on scales much too small to be resolved in production models. If
these instabilities are not removed by the sub-grid modelling, unstable cir-
culations are likely to develop on resolved scales which may be orders of
magnitude larger than the real ones. This can lead to results which are too
inaccurate to be useful. It is normal to develop specialized sub-grid models
to deal with this. In the atmosphere, such instabilities are often triggered by
moisture phase changes, and thus correspond to significant weather events.

2.3. Important asymptotic limits

In this section we discuss some of the important asymptotic regimes for
production atmosphere and ocean models. A more comprehensive treatment
is given in textbooks such as Pedlosky (1987) and Gill (1982).

Figure 2.1 shows a diagram due to Smagorinsky (1974) which plots at-
mospheric phenomena as a function of horizontal scale and time-scale. The
phenomena traditionally associated with extra-tropical weather forecasting
are grouped along the diagonal, indicating that their horizontal scale L

is typically proportional to T
3

2 , where T is their time-scale, so they can
all be characterized by a horizontal velocity U = LT−1 between about
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Figure 2.1. Typical space- and time-scales of atmospheric
phenomena (following Smagorinsky (1974)).

1 and 10m s−1. There are also other classes of motion, such as gravity waves,
which have time-scales shorter by an order of magnitude for a given length-
scale, and sound waves with a time-scale several orders of magnitude shorter.
Molecular diffusion acts on much smaller horizontal scales, as discussed
earlier.

Though not shown in Figure 2.1, the typical vertical scale is also impor-
tant. The effect of surface friction dominates in a boundary layer, which
has a thickness of order 1 km. The troposphere, which contains nearly all
the moisture, and where most weather systems are confined, is about 10 km
deep. Above the troposphere is the stratosphere which is much more stably
stratified. It is therefore necessary to consider a range of aspect ratios H/L,
where H is the vertical scale. The requirement that the vertical velocity W
has a similar time-scale to the horizontal velocity gives that W/U ≃ H/L.
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Large horizontal scales

We now consider some of the important limits in more detail. We first
consider large horizontal scales, where ‘large’ will be specified below but is
intended to correspond to the scale of extra-tropical weather systems. This
means that the viscous and thermal conductivity terms can be neglected.

The first step is to recognize that the acceleration due to gravity, g, is
much larger than the acceleration of the air in a weather system. However,
this acceleration is largely compensated by a vertical pressure gradient. We
therefore define a time-independent reference state at rest, which satisfies
equations (2.1), with uniform potential temperature θ0 and with pressure
p0 and density ρ0 depending only on the radial coordinate. This is given by
an Exner pressure Π0(r) satisfying

Cpθ0
dΠ0

dr
+ g = 0,

θ0 = constant, (2.8)

Π0 = 1 at r = a.

Subtract this state from (2.5). The equation becomes

Du

Dt
+ 2Ω × u + Cpθ∇Π′ − g

θ′

θ0
r̂ = 0 (2.9)

where θ′ = θ − θ0 and Π′ = Π − Π0.
We next separate the cases where the horizontal scale is comparable to the

radius of the Earth (so that the spherical geometry has to be considered),
and smaller horizontal scales which can be studied in plane geometry. In the
large-scale case, the next step is to recognize that the atmosphere is ‘shal-
low’. The restriction of the vertical scale to the depth of the troposphere
means that the aspect ratio for such flows is less than 0.01 and therefore the
ratio of the vertical to the horizontal velocities is also less than 0.01. Under
these conditions it can be shown that only the horizontal components of the
Coriolis force 2Ω × u need be considered, and that the radial coordinate r
can be replaced by a wherever it appears undifferentiated. This approxi-
mation is discussed in detail by White, Hoskins, Roulstone and Staniforth
(2005). The result is that the components of the Coriolis force can be writ-
ten as (−fv, fu, 0) where the Coriolis parameter f = 2Ω sinφ. The shallow
atmosphere approximation is very accurate, and is used in many operational
weather forecasting and climate models.

The next step in analysing large-scale flow is to show that it is hydrostatic.
In the vertical component of equation (2.9), the term gθ′/θ0 is typically
about 1 m s−2, since the horizontal variations of θ are typically about 10% of
the mean value. Since horizontal and vertical velocities have similar time-
scales, Dw/Dt ≃ (H/L)Du/Dt. Given the aspect ratio of 0.01 discussed
above, if Dw/Dt ≃ 1m s−2, then Du/Dt ≃ 100 m s−2. This is far larger
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than observed. The implication is that the vertical component of equation
(2.9) can be replaced by a statement of hydrostatic balance.

Cpθ
∂Π′

∂r
− g

θ′

θ0
= 0. (2.10)

This approximation is very accurate on large scales, and is also used in
many weather forecasting and climate models. Its relation to other possible
large-scale approximations is discussed by White et al. (2005).

We summarize the resulting reduced version of (2.1), (2.3), (2.4) and
(2.5), writing ∇r for the horizontal components of the gradient operator
and ur = (u, v):

Dur

Dt
+ (−fv, fu) + Cpθ∇rΠ

′ = 0,

Cpθ
∂Π′

∂r
− g

θ′

θ0
= 0,

∂ρ

∂t
+ ∇ · (ρu) = 0,

Dθ

Dt
=

1

CpΠ
(Sh + LP ),

Dq

Dt
= Sq − P,

prefΠ
1

γ−1 = ρRθ.

(2.11)

The hydrostatic approximation means that there is no explicit evolution
equation for w. The next step is to deduce w from the other equations.
The hydrostatic relation (2.10) and the equation of state together give two
constraints between the thermodynamic variables Π, ρ and θ. Consistency
of the separate evolution equations for ρ and θ yields ‘Richardson’s equation’
(see White (2002)):

γ
∂

∂r

{

p

(

∂w

∂r
+∇r ·u− 1

CpΠ
(Sh + LP )

)}

=
∂p

∂r
∇r ·u− ∂ur

∂r
· ∇rp. (2.12)

It is also shown in White (2002) that equations (2.11) with Sh = P = 0
yield a potential vorticity conservation law of the form (2.7) with potential
vorticity

Q =
1

ρ
(r̂ ×∇ur + f r̂) · ∇θ. (2.13)

Classification of large-scale flows

We now classify the various types of large-scale flow further. The approxi-
mations made in the previous subsubsection filter sound waves which have
a component propagating in the vertical. We now carry out an analysis of
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equations (2.10) to (2.12) linearized about a state of rest with a basic state
θ which varies with r. This enables us to identify the different types of
motion and the important flow parameters. These are then used to define
asymptotic regimes.

As in Thuburn, Wood and Staniforth (2002a), a simple analytic treatment
requires a choice of basic state where the squared speed of sound c2 =

CpθΠ(γ−1) and the Brunt–Väisälä frequency N =
√

g
θ

∂θ
∂r are constants. Set

(p, ρ, θ) = (p1(r), ρ1(r), θ1(r)) with Cpθ1∂Π1/∂r + g = 0. Setting (p, ρ, θ) =
(p1, ρ1, θ1) + (p′, ρ′, θ′) in (2.11) and (2.12) yields the system

∂u

∂t
− fv +

Cpθ1

a cos φ

∂Π′

∂λ
= 0,

∂v

∂t
+ fu +

Cpθ1

a

∂Π′

∂φ
= 0,

∂θ

∂t
+ w

∂θ1

∂r
= 0, (2.14)

Cpθ1
∂Π′

∂r
− g

θ′

θ1
= 0,

(γ − 1)
∂p1

∂r
∇r · u + γ

∂p1

∂r

∂w

∂r
+ p1γ

∂

∂r
∇r · u = 0.

This can be analysed in plane geometry by writing x = aλ cos φ, y =
aφ, z = r and considering solutions proportional to expi(kx+ly−ωt). Write
the vertical structure function as Z(z). Following Thuburn et al. (2002a),
this can be shown to yield non-trivial solutions if ω = 0 or

−Zc2 (k2 + l2)

(ω2 − f2)
− Z +

c2

N2

(

d

dz
+

N2

g

)(

d

dz
+

g

c2

)

Z = 0. (2.15)

Equation (2.15) represents the dispersion equation for inertia-gravity waves.
The boundary conditions on w imply that

(

d

dz
+

g

c2

)

Z = 0 (2.16)

at z = 0, ztop. This is an eigenvalue problem for 1+c2 (k2+l2)
(ω2−f2)

. ω can then be

calculated for given horizontal wave-numbers. This equation is identical in
form to equation (4.9) of Thuburn et al. (2002a) with a different constant
multiplying Z. The solutions therefore take the form given in Thuburn
et al.’s equations (4.13) and (4.15). There are external modes, with

Z ∝ exp

(

−gz

c2

)

, (2.17)
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and internal modes

Z ∝
(

Γ sin(mz) − m cos(mz)
)

exp

(

−γgz

2c2

)

, (2.18)

where Γ = (1/2)(g/c2 − N2/g).
Consider the external modes first. Then

(

d

dz
+

g

c2

)

Z = 0

and ω is given by
ω2 = f2 + c2(k2 + l2). (2.19)

This corresponds to a horizontally propagating sound wave, modified by ro-
tation. The sound wave speed is c =

√

γp1/ρ1 which is of order 300 m s−1.
The associated external Froude number Fr is the ratio of the typical hori-
zontal velocity U to c, and is usually less than 0.1 in the atmosphere. The
frequency associated with the horizontal velocity is U/L. This is much less
than ω if either U ≪ c, so that Fr is small, or U ≪ fL, so that the Rossby
number Ro = U/fL is small. The two conditions coincide for a length-
scale equal to the external Rossby radius of deformation LR, in this case
equal to c/f . This is about 3000 km in the atmosphere, corresponding to a
wave-length of 20 000 km, or a planetary wave-number 2.

For the internal waves, the eigenvalue equation takes the form

c2 (k2 + l2)

(ω2 − f2)
+ 1 + Λ(m) = 0,

where Λ(m) is a quadratic polynomial in m with leading term c2m2/N2.
For large m, this gives

ω2 ≃ f2 + N2 (k2 + l2)

m2
. (2.20)

Given a characteristic horizontal velocity U , the associated frequency is
U/L. Equation (2.20) shows that this frequency is significantly less than
the inertia-gravity wave frequency ω if either U/L ≪ NH/L, so the in-
ternal Froude number U/(NH) ≪ 1, or U/L ≪ f , so the Rossby number
U/(fL) ≪ 1. The two conditions coincide if H/L = f/N . This defines
a characteristic aspect ratio. Equivalently, we can state that the horizon-
tal scale is equal to the internal Rossby radius NH/f . If f = 10−4 s−1,
which is characteristic of the extra-tropics, N = 10−2 s−1, which is char-
acteristic of the troposphere, and H = 10 km, which is the tropospheric
depth, then the internal Rossby radius is 1000 km, corresponding to a wave-
length of 6000 km. The aspect ratio f/N is 0.01. In the stratosphere N =
3×10−1 s−1, giving an internal Rossby radius of 3000 km and f/N = 0.001.
If U = 10m s−1, then the frequency U/L is much less than the inertia-gravity
wave frequency in the troposphere if either H ≫ 1 km or L ≫ 100 km.
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The aspect ratio f/N is important when understanding the behaviour of
atmospheric flows with frequencies less than that given by (2.20). Large
extra-tropical disturbances tend to develop with aspect ratios close to f/N
because this configuration allows efficient conversion of potential to kinetic
energy, as first established by Charney (1948). If the aspect ratio is less than
f/N , the potential vorticity defined by (2.13) is approximately 1

ρf r̂ ·∇θ and
is thus primarily a measure of static stability, together with the variation of
the planetary vorticity f r̂. The energy of disturbances is primarily potential
rather than kinetic energy. If the aspect ratio is greater than f/N , but
smaller than 1, which is required for the validity of the shallow atmosphere
hydrostatic equations, then the potential vorticity is approximately 1

ρ(r̂ ×
∇ur + f r̂) · ∇θ1, where θ1(r) is a reference state such as used in (2.14).
Thus potential vorticity variations are determined by vorticity variations.
The energy of disturbances is primarily kinetic energy. These behaviours
are analysed by Gill (1982), and also hold for disturbances independent of
height when the threshold becomes the external Rossby radius LR. The case
of aspect ratios of order 1 is discussed in the next subsection. We will show
in Section 3 that the behaviour of the solutions of (2.11) is qualitatively
different as the aspect ratio changes through f/N . This is important in
considering optimal numerical methods or data assimilation techniques.

If the frequency of forcing terms is comparable to the inertia-gravity wave
frequency, then the inertia-gravity wave response will be important. This
happens on large scales in the tropics where f tends to zero. Since f changes
rapidly away from zero away from the equator, tropical waves tend to have a
very asymmetric structure with a larger scale along the equator (Gill 1982),
which determines the response to localized forcing on time-scales less than
a few days. Tidal motions occur because the frequency (2.17) determined
by the horizontal sound speed is comparable to the diurnal frequency of
radiative forcing, so a resonant response is possible.

We now show how this analysis can be exploited in the nonlinear equations
(2.11) and (2.12) by deriving a second-order wave equation for the evolu-
tion of the horizontal divergence. This will be needed when applying the
analysis to production models. The horizontal momentum equations and
the thermodynamic equation from (2.11) can be rewritten in component
form as

∂u

∂t
− fv +

Cpθ

a cos φ

∂Π′

∂λ
= A1,

∂v

∂t
+ fu +

Cpθ

a

∂Π′

∂φ
= A2, (2.21)

∂θ

∂t
+ w

∂θ

∂r
= A3.

where A1, A2 and A3 represent all the remaining terms. The choice of terms
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retained on the left-hand side of equations (2.21) is suggested by the linear
analysis above.

The first two of equations (2.21) can be combined into an equation for
the evolution of the horizontal divergence ∆ = ∇r ·ur. The terms resulting
from differentiating f and θ are transferred to the right-hand side:

∂∆

∂t
− f

a cos φ

(

∂v

∂λ
− ∂

∂φ
(u cos φ)

)

+ Cpθ∇2
rΠ

′ = A4, (2.22)

where ∇2
r ≡ ∇r · (∇r). Now calculate the second time derivative, substitut-

ing for ∂u/∂t and ∂v/∂t using the first two equations of (2.21), and again
transferring some terms to the right-hand side:

∂2∆

∂t2
+ f2∆ + Cpθ∇2

r

∂Π′

∂t
= A5. (2.23)

The final step is to differentiate with respect to r, to use the hydrostatic
relation in the form Cpθ∂Π/∂r + g = 0 and the time-independence of the
basic state to substitute for ∂2Π′/∂r∂t in terms of ∂θ/∂t, and to use the
third equation of (2.21) for ∂θ/∂t. This gives

∂2

∂t2

(

∂∆

∂r

)

+ f2 ∂∆

∂r
+ N2∇2

rw = A6, (2.24)

where the Brunt–Väisälä frequency N =
√

g
θ

∂θ
∂r . Using (2.12) it is possible

to eliminate w in favour of ∆ by integrating in r, thus obtaining the desired
wave equation for the horizontal divergence. It takes the generic form

∂2∆

∂t2
+ L∆ = A (2.25)

where L is a positive definite linear operator. This operator will reduce to
that derived from (2.14) if the atmospheric state is given by the reference
state used in (2.14) and plane geometry is assumed.

If L∆ is larger than the right-hand side terms A, then equation (2.25)
describes forced linear inertia-gravity waves. If L∆ and A are of similar
magnitude, and the natural frequencies of the waves are large compared
with those contained in A, then the response to the ‘forcing’ terms A can
be expressed as the ‘slow’ equation

L∆ = A. (2.26)

This equation will apply in the cases identified above where ω as given by
(2.19) or (2.20) is much larger than U/L. When this happens L will have
large eigenvalues compared with the frequencies implied by A.
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Smaller-scale behaviour

Now consider smaller-scale behaviour. We characterize this by assuming
an aspect ratio of O(1), so that the horizontal scale is of order 10 km. The
hydrostatic approximation was justified by the assumption of a small aspect
ratio, so is no longer applicable. For typical wind speeds, this horizontal
scale implies a time-scale less than f−1, so that the Rossby number Ro > 1.
The internal Froude number Fr may be greater or less than 1 according to
the vertical scale and the strength of the stratification. This scale is, how-
ever, still sufficiently large for the viscous and thermal conductivity terms
in (2.1) to be neglected. On these scales we can use Cartesian coordinates
(x, y, z). Therefore consider equations (2.1) with (2.3), (2.4) and (2.5), omit
the viscous and conductivity terms, and subtract the reference state (2.8)
to give (2.9). We also omit the moisture equation and other forcing terms.
This yields the equations

Du

Dt
+ 2Ω × u + Cpθ∇Π′ − g

θ′

θ0
r̂ = 0,

∂ρ

∂t
+ ∇ · (ρu) = 0,

Dθ

Dt
= 0,

prefΠ
1

γ−1 = ρRθ.

(2.27)

As in the large-scale case, we first study the behaviour of (2.27) linearized
about the hydrostatic reference state defined before (2.14). We assume that
rotation is unimportant on this scale, so the equations are

∂u

∂t
+ Cpθ1∇Π′ − g

θ′

θ1
r̂ = 0,

∂ρ

∂t
+ ∇ · (ρ1u) = 0,

∂θ

∂t
+ w

∂θ1

∂z
= 0,

1

γ − 1

Π′

Π1
=

ρ′

ρ1
+

θ′

θ1
.

(2.28)

We assume rigid upper and lower boundary conditions. These equations
are a subset of those analysed by Thuburn, Wood and Staniforth (2002b).
Consider solutions proportional to expi(kx+ly+mz). The dispersion relation
for the external mode can then be deduced from Thuburn et al.’s equation
(4.4) as

ω2 = c2(k2 + l2). (2.29)

This corresponds to a horizontally propagating sound wave. The dispersion
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relation for the internal modes is deduced from Thuburn et al.’s equation
(4.5) as

(ω2 − c2(k2 + l2))(ω2 − N2) − c2

(

m2 +
1

4

(

g

c2
− N2

g

)2)

ω2 = 0. (2.30)

This equation describes pairs of oppositely propagating gravity and sound
waves. The sound waves propagate with speed c. For small vertical scales,
the gravity wave dispersion relation is approximately ω2m2 = N2(k2 + l2).

Observed atmospheric winds are always smaller than the speed of sound,
usually by an order of magnitude. It is thus safe only to consider the case
where U ≪ c. The internal Froude number is defined as the ratio of the
wind speed to the internal gravity wave speed, this is given approximately
by Fr = U/NH. This can be either greater or less than 1 according to the
circumstances. Observations of flow over hills show that lee waves occur if
Fr > 1 and flow blocking, possibly with downstream hydraulic jumps, occurs
if Fr < 1 (Gill 1982). Since the qualitative nature of the solutions to (2.27)
is different in these cases, the choice of optimal numerical methods and data
assimilation techniques may also be different, as discussed in Section 3.

We now seek an analogue of the derivation of (2.26) from (2.25) by ex-
ploiting the knowledge that U ≪ c. By analogy with the derivation of
(2.21), rewrite equations (2.27) in the form

∂u

∂t
+ Cpθ∇Π′ − g

θ′

θ0
k̂ = B1,

∂ρ

∂t
+ ∇ · (ρu) = 0,

∂θ

∂t
+ w

∂θ1

∂z
= B3,

prefΠ
1

γ−1 = ρRθ,

(2.31)

where k̂ is a unit vector in the z− direction. Take the divergence of the
momentum equations and transfer the terms in ∂θ/∂r and ∂θ′/∂r to the
right-hand side to give

∂(∇ · u)

∂t
+ Cpθ∇2Π′ = B4. (2.32)

Differentiating the last equation of (2.31) with respect to time, the result
can be written

ρ

γ − 1

∂Π

∂t
− Π

∂ρ

∂t
= B5. (2.33)

Combining (2.33), (2.32) and the continuity equation from (2.31) gives

∂2(∇ · u)

∂t2
− CpθΠ(γ − 1)∇2(∇ · u) = B6. (2.34)
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This is a forced second-order wave equation for ∇ · u. Now CpθΠ(γ − 1) =
γRθΠ = γp/ρ = c2, so we see that if U ≪ c, (2.34) can be approximated by
the slow equation

−c2∇2(∇ · u) = B6. (2.35)

Note that this is an equation for the three-dimensional divergence, rather
than the two-dimensional divergence which is determined by (2.26). This is
an analogue of (2.26) which can be used on small scales.

2.4. Use of asymptotic limit solutions

We assume that the governing equations can be averaged, as discussed in
Section 2.2. The viscous and thermal conductivity terms can be removed,
and additional terms inserted on the right-hand sides of the equations rep-
resenting the sub-grid model. After subtracting the reference state (2.8) to
give (2.9), equations (2.1) with (2.3), (2.4) and (2.5) can be written as

Du

Dt
+ 2Ω × u + Cpθ∇Π′ − g

θ′

θ0
r̂ = Fu,

∂ρ

∂t
+ ∇ · (ρu) = 0,

Dθ

Dt
=

1

CpΠ
(Sh + LP ) + Fθ, (2.36)

Dq

Dt
= Sq − P + Fq,

prefΠ
1

γ−1 = ρRθ.

Suppose that the averaging is on a horizontal scale L, a vertical scale H
and a time-scale T . The solutions of the equations will then vary smoothly
on these space- and time-scales, either in an Eulerian or a Lagrangian sense.
The sub-grid terms may be introduced implicitly by the method of dis-
cretization. We can then apply analyses such as those set out in Section 2.3
on the assumption that the solutions of the equations only contain scales
larger than L, H and T .

For example, if L ≫ 10 km, the aspect ratio of the solutions must be small,
and the shallow atmosphere hydrostatic equations, (2.11) will be satisfied
accurately on all scales that are permitted by the averaging. They can then
be used in the predictive equations. The right-hand side of (2.11) should
now include the sub-grid model terms, giving

Dur

Dt
+ (−fv, fu) + Cpθ∇rΠ

′ = Fur ,

Cpθ
∂Π′

∂r
− g

θ′

θ0
= Fw,
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∂ρ

∂t
+ ∇ · (ρu) = 0,

Dθ

Dt
=

1

CpΠ
(Sh + LP ) + Fθ, (2.37)

Dq

Dt
= Sq − P + Fq,

prefΠ
1

γ−1 = ρRθ.

Note that the sub-grid term must even appear in the hydrostatic relation,
since it is this term that ensures that Dw/Dt is always small. Equations
(2.37) are widely used in operational prediction models, though the Fw

term is not normally included. For instance, the model currently used by
the European Centre for Medium Range Weather Forecasts (ECMWF) uses
these equations with an averaging scale of about 50 km.

Now consider the approximation of (2.25) by (2.26), which filters inertia-
gravity waves. This is not valid on all scales permitted by current production
models. This is because the typical T is less than 1 hour, while the inertial
period 2πf−1 is at least 12 hours. However, the period of some inertia-
gravity waves is much less than 1 hour. Thus (2.26) will be satisfied on
some, but not all scales that are represented. This is discussed in detail
in Section 3.2. Selective application of (2.26) is useful in data assimilation.
It is also useful for ensuring that time-varying forcing is included in a way
which ensures the response to it is on an appropriate time-scale. A further
application is in validating model solutions.

The inclusion of the sub-grid terms is important when considering what
conservation properties are important. Equation (2.11) conserves the po-
tential vorticity (2.13) if the source and sink terms are zero. However, the
inclusion of the sub-grid terms to give (2.37) will destroy potential vortic-
ity conservation. Thus there is no longer a justification for enforcing it in
discrete models.

In order to demonstrate that the sub-grid terms are correct, it is necessary
to ensure that (2.36) or (2.37) have solutions which are smooth on the
scales L, H and T . For example, Cao and Titi (2005) analyse a slightly
simplified form of equations (2.37), and show that they can be solved if
viscosity is included. Their proof depends critically on the viscosity, as it
shows that the problem can be reduced to the three-dimensional Burgers
equation Du/Dt = 0. This describes colliding particle trajectories and
can only be solved if there is sufficient viscosity to prevent such collisions.
Equations (2.37) can thus be solved if the sub-grid term Fur incorporates
sufficient viscosity. A similar result was obtained by Lions, Temam and
Wang (1992a), where the importance of including the term Fw in equations
similar to (2.37) is demonstrated. With horizontal averaging scales of order
100 km, this level of viscosity may lead to inaccurate solutions, since it is
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unlikely that the averaged behaviour of the atmosphere is like that of a fluid
with a low enough Reynolds number to give smooth behaviour on this scale.

The limitation of the averaging approach is that, because of the nonlinear-
ity of the equations, it is not possible to write down sub-grid models which
will ensure that the solution of the modified governing equations will accu-
rately represent the average of the solution of the original equations. An
alternative approach is to prove that the behaviour of the unaveraged gov-
erning equations stays close to that of suitable asymptotic limit equations
for ‘long’ time periods, typically of order the length of time that is being
modelled. This requires proving the existence and uniqueness of solutions
to the asymptotic limit equations for sufficiently large times to describe the
phenomena of interest. The results can then be extended to numerical ap-
proximations to the governing equations. Typically, the proof of existence
depends on particular conservation properties of the limit equations, and
some analogue of these conservation properties should then be enforced on
the numerical approximation to the governing equations.

In choosing useful asymptotic limit equations, it is desirable that existence
of solutions can be proved without introducing extra regularization which
is not appropriate for the regime being considered. If such terms have to
be included, they may degrade the accuracy and usefulness of the resulting
estimate. An example is provided by the viscosity that has to be included to
solve (2.37). We show in Section 3.6 that this is probably much larger than
the real viscosity, and will lead to solutions that suggest that large-scale
circulations are more dissipative than they really are.

3. Numerical methods for particular asymptotic regimes

3.1. Introduction

In this section we consider a selection of the most important asymptotic
regimes of the atmosphere introduced in the previous section. It does not
attempt to be comprehensive, since almost all types of fluid flow can occur
somewhere in the atmosphere. We discuss the structure of the appropriate
limit equations, and identify the conservation properties which would be
required to integrate the limit equations for long periods. We then discuss
how these could be applied in integrations of the basic equations (2.1).
We expect that it will be necessary to do this in order to ensure that the
numerical solution of (2.1) will stay as close to the limit solution as it should.

3.2. Regimes with ‘fast’ inertia-gravity waves

Consider the case where the advection frequency U/L is much less than the
inertia-gravity wave frequency ω calculated in (2.15). This is often called
the ‘balanced’ regime, but this term is ambiguous and so better avoided.



86 M. J. P. Cullen

We derive limit equations called the nonlinear balance equations from the
shallow atmosphere hydrostatic equations (2.11) by using ε = U/(ωL) as
the small parameter. For internal waves with small vertical scale, where ω is
given by (2.20), ε can be related to the Rossby and internal Froude numbers
by ε2 = (Ro−2 + Fr−2)−2. A similar equation applies for external waves with
ω given by (2.19). There are many versions of this type of analysis in the
literature; for instance, see McWilliams, Yavneh, Cullen, and Gent (1999),
Warn, Bokhove, Shepherd and Vallis (1995), Lynch (1989), Holm (1996),
Ford, McIntyre and Norton (2000) and Mohebalhojeh and Dritschel (2001).

Equations (2.11) can be rewritten in terms of the vertical component of
the vorticity, ζ, and the horizontal divergence, ∆, defined by

ζ =
1

a cos φ

(

∂v

∂λ
− ∂u cos φ

∂φ

)

,

∆ =
1

a cos φ

(

∂u

∂λ
+

∂v cos φ

∂φ

)

.

(3.1)

The horizontal momentum equations become

∂ζ

∂t
+

u

a cos φ

∂(ζ + f)

∂λ
+

v

a

∂(ζ + f)

∂φ
+ w

∂ζ

∂r
+ (ζ + f)∆ + (3.2)

1

a cos φ

∂w

∂λ

∂v

∂r
− 1

a

∂w

∂φ

∂u

∂r
= 0,

∂∆

∂t
+

u

a cos φ

∂∆

∂λ
+

v

a

∂∆

∂φ
+ w

∂∆

∂r
+ ∆2 − 2J(u, v) + (3.3)

1

a cos φ

∂w

∂λ

∂u

∂r
+

1

a

∂w

∂φ

∂v

∂r
+ ∇r · Cpθ∇rΠ

′ −∇r · (fv,−fu) = 0,

where ∇r again denotes a horizontal derivative and (u, v) ≡ ur. We now
follow the steps used to derive (2.24), but making explicit some of the most
important terms in A6. This gives

− ∂2

∂t2
∂2w

∂r2
−f

∂

∂r

(

(ζ + f)
∂w

∂r

)

− g

θ
∇2

r

(

w
∂θ

∂r

)

= (3.4)

g

θ
∇2

r

(

ur · ∇rθ − 1

CpΠ
(Sh + LP )

)

+
∂

∂r

(

−fur · ∇r(ζ + 2f) + 2
∂

∂t
J(u, v)

)

+ remainder.

The linearization of this equation describes inertia-gravity waves with
the frequency ω calculated in (2.15). Consider a regime with velocity-scales
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and length-scales U and L, such that ε = U/(Lω) ≪ 1, and depth-scale H
such that H ≪ L, so that (3.2) and (3.4) are valid. Then the argument
that was used to derive (2.26) from (2.25) shows that equation (3.4) can be
approximated by

f
∂

∂r

(

(ζ + f)
∂w

∂r

)

+ ∇2
r(N

2w) = (3.5)

− g

θ
∇2

r

(

ur · ∇rθ − 1

CpΠ
(Sh + LP )

)

− ∂

∂r

(

−fur · ∇(ζ + 2f) + 2
∂

∂t
J(u, v)

)

+ remainder.

It can be shown that it is also consistent to neglect many but not all of the
terms in ‘remainder’. Equation (2.26) shows that ∆ = L−1A and is thus
small under our assumptions. The second equation of (3.2) can then be
approximated by

−2J(u, v) +
1

a cos φ

∂w

∂λ

∂u

∂r
+

1

a

∂w

∂φ

∂v

∂r
+∇r ·Cpθ∇rΠ

′ −∇r · (fv,−fu) = 0.

(3.6)
Equation (3.5) is exactly of the form (2.26), and is thus used to define

L. The system of equations comprising (3.1), (3.2), the diagnostic relations
(2.10) and (2.12), the definition of Π′, and equations (3.5) and (3.6) form
eight equations for u, v, w, ζ, ∆, θ, p, Π′. These form the nonlinear balance
equations. After some manipulations, further consistent approximations,
and the use of potential temperature as a coordinate, these reduce to the
equations used in McWilliams et al. (1999), subject to changes in nota-
tion. It is also shown there that the resulting equations retain the potential
vorticity conservation law (2.13).

Solvability of these equations is shown by McWilliams et al. (1999) to
depend on the conditions

(i) ∂θ/∂r does not change sign,

(ii) ζ + f does not change sign,

(iii)

(ζ + f)2 −
(

∂2ψ

∂x2
− ∂2ψ

∂y2

)2

− 4

(

∂2ψ

∂x∂y

)2

> 0, (3.7)

where the stream-function ψ is defined by ∇2
rψ = ζ, with ζ defined by (3.1).

The product of conditions (i) and (ii) requires that the potential vorticity
does not change sign. Since (2.13) still holds, spontaneous violations of
condition (i) are only possible if both (i) and (ii) are violated simultaneously.
Condition (iii) is liable to spontaneous violations as it is not a constant of
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the motion. Computations (McWilliams and Yavneh 1998) show that these
do indeed occur. If the initial data has small Rossby number, the velocity
gradients have magnitude U/L ≪ f and condition (3.7) will be satisfied. If
the initial data has small internal Froude number U/(NH) but large Rossby
number, (3.7) may not be satisfied even though H ≪ L. The solvability
conditions result from writing the equations as a fully coupled system. If
the Froude number is small, but the Rossby number is large, the eigenvalue
of the system associated with ∂θ/∂r is much larger than the others. A
good approximation to the system can then be solved by decoupling it, as
described in Section 3.5.

The nonlinear balance equations approximate equations (2.11) to an ac-
curacy O(ε2). This was achieved by neglecting the first and second time
derivatives of ∆ in (3.3) and (3.4). In Mohebalhojeh and Dritschel (2001)
it is shown that approximations of any polynomial order to (2.11) could be
generated by neglecting successively higher time derivatives in deriving ap-
proximations to equations (3.3) and (3.4). If the resulting equations could
be solved for long time periods, it would be possible to prove that solutions
of (2.11) with suitable initial data remained close to the solutions of the non-
linear balance equations for long times, and the inertia-gravity waves would
thus be restricted to very small amplitudes. The apparent lack of solvabil-
ity means that there is no such thing as a solution of the nonlinear balance
equations for long times which can be compared with the solution of the
original equations, and so no such conclusion can be drawn. In McWilliams
and Yavneh (1998) it is suggested that spontaneous violations of condition
(3.7) correspond to local bursts of inertia-gravity wave activity.

The discussion in Section 2.4 suggests that it would be of interest to reg-
ularize the equations by including sub-grid terms in a way that ensured
solvability. The approximations made in deriving the nonlinear balance
equations are derived in an Eulerian frame. Start from the averaged shal-
low atmosphere hydrostatic equations (2.37), which requires assuming a
horizontal averaging scale L ≫ 10 km. Assume additionally that L is large
enough for ε to be small. Following the derivation used to obtain equation
(3.4) gives

− ∂2

∂t2
∂2w

∂r2
− f

∂

∂r

(

(ζ + f)
∂w

∂r

)

− g

θ
∇2

r

(

w
∂θ

∂r

)

= (3.8)

g

θ
∇2

r

(

ur · ∇rθ − 1

CpΠ
(Sh + LP )

)

+
∂

∂r

(

−fur · ∇r(ζ + 2f) + 2
∂

∂t
J(u, v)

)

+
∂2

∂t∂r
(∇ · Fur) + remainder.

A sub-grid term ∂2

∂t∂r (∇ · Fur) has been introduced.
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The assumption ε ≪ 1 means that (3.8) can be approximated by

f
∂

∂r

(

(ζ + f)
∂w

∂r

)

+ ∇2
r

(

N2w
)

= (3.9)

− g

θ
∇2

r

(

ur · ∇rθ − 1

CpΠ
(Sh + LP )

)

− ∂

∂r

(

−fur · ∇r(ζ + 2f) + 2
∂

∂t
J(u, v)

)

− ∂2

∂t∂r
(∇ · Fur),

which is derived by including the sub-grid term in (3.5). Similarly, a sub-
grid term has to be added to the right-hand side of (3.6), giving

− 2J(u, v) +
1

a cos φ

∂w

∂λ

∂u

∂r
+

1

a

∂w

∂φ

∂v

∂r
(3.10)

+ ∇r · Cpθ∇rΠ
′ −∇r · (fv,−fu) = ∇ · (Fur).

Since (3.7) is satisfied under these conditions, the modified form (3.9) and
(3.10) of the nonlinear balance equations can be solved, and the solutions
will be close to those of equations (2.37).

Sub-grid terms will now appear in the potential vorticity equation. Po-
tential vorticity conservation will then no longer apply. An example is given
by Ziemianski and Thorpe (2003), though with a different interpretation.
In their computations using a numerical solution of (2.1), large sources
of potential vorticity appear. These are in a frontal zone, where there is
organized unresolved small-scale activity in the solution, and so potential
vorticity, which is nonlinear, would not be conserved under the Eulerian
averaging implied by the model. This is represented by the sub-grid term
in the potential vorticity equation and would be likely to explain the re-
sults shown in that paper. The effect of Lagrangian averaging on potential
vorticity conservation for a frontal zone is discussed in Section 4.3.

Now, given L ≫ 10 km, we achieve the condition that ε is small by choos-
ing a sufficiently large vertical averaging scale H. This choice of L is not
sufficient to ensure that (3.7) is satisfied. In this case (3.9) and (3.10) will
hold, but the time evolution cannot be calculated using the nonlinear bal-
ance equations. An alternative procedure which does work is described in
Section 3.5.

The discussion above shows that the diagnostic conditions (3.9) and (3.10)
are useful, but can only be applied selectively. This is exploited in the semi-
implicit method of time integration introduced by Robert (1981). This
is widely used in operational models, such as the ECMWF model (Ritchie,
Temperton, Simmons, Hortal, Davies, Dent and Hamrud 1995), and the Met
Office Unified Model (UM) (Davies, Cullen, Malcolm, Mawson, Staniforth,
White and Wood 2005). Robert’s motivation was to increase the efficiency of
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operational models by not resolving the time evolution of fast inertia-gravity
waves. Thus the time-step is chosen such that Uδt ≤ 1, where U is the
maximum velocity for which advection has to be treated accurately. Inertia-
gravity waves will not then be resolved in time in cases where ε ≪ 1. In such
cases, the solution will satisfy the nonlinear balance conditions (3.9), (3.10)
accurately. We therefore seek a time discretization of equations (2.37) which
ensures that the solution satisfies the nonlinear balance conditions whenever
ε ≪ 1, while noting that this condition will not be satisfied everywhere. We
illustrate the method by writing a time discretization of equation (2.21) as

δtu − fvt +
Cpθ

t

a cos φ

∂Π
′t

∂λ
= A

t
1,

δtv + fut +
Cpθ

t

a

∂Π
′t

∂φ
= A

t
2, (3.11)

δtθ + wt ∂θ
t

∂r
= A

t
3,

where δtu = (u(t + δt) − u(t))/δt and vt = (v(t + δt) + v(t))/2.
We can now go through the same steps as were used to derive (2.25) to

give a second-order equation for ∆(t + δt). The result is

δtt∆ + L∆
tt

= A
tt
. (3.12)

Assuming A is proportional to eiνt, and replacing L by its eigenvalue ω2,
there is a solution of (3.12) proportional to eiνt which is

− sin2(1
2νδt)∆ + δt2ω2 cos2(1

2νδt)∆ = Aδt2 cos2(1
2νδt). (3.13)

For non-zero A, since ωδt ≫ 1, this reduces to ω2∆ = A as desired.
This is because of the consistent time averaging on both sides of the equa-
tion. If an equation of the form (3.12) were derived from a three-time-level
approximation to (3.11), then the time averaging of A would not be re-
quired for numerical stability, and (3.13) would reduce to ω2 cos2(1

2νδt)∆ =
A, thus degrading the accuracy of the balanced solution. The frequency
of free inertia-gravity waves (obtained by setting A = 0), is reduced to
ω cos(ωδt)/ sin(ωδt) ≪ ω. The inertia-gravity waves in the solution are
thus no longer accurately treated.

This illustrates that, if ω2δt2 ≫ 1, (3.12) can be approximated by

L∆
tt

= A
tt

(3.14)

which is a discretization of (2.26). This approximation is exactly that used
to go from (3.4) to (3.5), which defines the nonlinear balance equations.
Moreover, the presence of the first term on the left-hand side of (3.12) will
ensure solvability if δt is small enough, even though (3.14) may not be
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solvable. The use of (3.12) therefore achieves the aim of enforcing nonlinear
balance selectively where ω2δt2 ≥ 1.

It is important that the spatial approximations maintain the condition
|L|δt2 ≥ 1. Some numerical discretizations will allow the eigenvalues of L

to become zero on the smallest spatial scales. Examples of this are given
in Section 3.3, and detailed analysis is given in Durran (1998). It is im-
portant to note that the operator L which appears in (2.26) is a variable-
coefficient operator. This is necessary to ensure that the nonlinear balance
equations are valid on large scales, where the coefficients may have O(1)
variations. Most implementations of the semi-implicit method have used a
constant-coefficient operator, which will thus not ensure consistency with
the balanced solution. The UM uses a variable-coefficient operator for this
reason. If equation (3.14) is solved iteratively, with a constant-coefficient
approximation to L as a preconditioner, then the accuracy of the balanced
solution will be degraded if the convergence of the iteration is insufficient.

The enforcement of balance can be strengthened by using a decentred
time averaging of the terms on the left-hand side of (3.11). If L is time-
independent, this yields

δtt∆ + L(α2∆(t + δt) + 2α(1 − α)∆(t) + (1 − α)2∆(t − δt) = A
tt
, (3.15)

as an approximate replacement for (3.14). The condition α ≥ 1
2 is required

for stability. The decentering will not change the potential vorticity conser-
vation law, except for the change to the advection of the potential vorticity
by the divergent wind. The inertia-gravity waves which are not well-resolved
in time will be damped, but this is desirable as they are no longer travelling
at the correct speed.

When considering the effect of decentred time integration in production
atmospheric models, note that invariably fδt ≪ 1, so that the rotational
contribution to ω as defined in (2.20) will not be significant on scales where
ωδt ≫ 1. In the global forecast version of the UM, the horizontal grid-length
is about 40 km, and the time-step 15 minutes. The Courant number Uδt/δx
will thus be 1 for a speed U of about 45 m s−1. The condition ωδt ≥ 1 is sat-
isfied for the external gravity wave which has speed approximately 300 m s−1

if the spatial wave-length is less than 300 km, and thus decentering will sup-
press the waves with wave-lengths up to about 1000 km. Internal gravity
waves with speeds greater than 45 m s−1 will be suppressed on progressively
smaller scales. An example of the effect of decentering with explicit time
integration is described and analysed by Fox-Rabinowitz (1996), while the
effect of decentred implicit time-differencing was pointed out by A. Stan-
iforth (personal communication); see Section K.5.6 of Staniforth, White,
Wood, Thuburn, Zerroukat and Cordero (2002).

While decentering is useful in preventing rapidly oscillating solutions, be-
cause fδt ≪ 1 it is far short of selecting out the meteorologically significant
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motions which are rotation-dominated. The model will thus resolve many
other motions, including external gravity waves with a wave-length greater
than about 1000 km. The use of decentred time integration may be partic-
ularly useful when forcing terms with high time-frequency are added to the
equations, since their effect is then time-averaged to fit the time-resolution
of the model. It may also be useful in four-dimensional variational data
assimilation, where observation increments are added in a way which may
not be compatible with the diagnostic relations (3.5) and (3.6). This was
the motivation for the paper by Fox-Rabinowitz (1996).

Equation (3.11) represents a fully implicit time-discretization of (2.21).
The time-average on the right-hand side generates a nonlinear implicit prob-
lem for the values at time t + δt. As noted by Staniforth, the procedure
introduced by Fox-Rabinowitz (1996) formed the first two iterations of an
implicit procedure for solving this system. It should also be noted that the
Heun advection scheme used in the original UM, Cullen and Davies (1990)
takes the same form. We illustrate by displaying the iterations for solving
the first equation of (3.11):

(u∗ − u(t))

δt
− fv∗ +

Cpθ(t)

a cos φ

∂Π
′∗

∂λ
= A1(t),

δtu − fvt +
Cpθ

∗

a cos φ

∂Π
′t

∂λ
= A

∗
1,

(3.16)

where the notation v∗ indicates 1
2(v(t)+v∗). Each iteration requires solution

of an implicit problem of the form (3.12). Yeh, Côté, Gravel, Méthot,
Patoine, Roch and Staniforth (2002) used this scheme in the Canadian GEM
model, and Cullen (2001) demonstrated its use in the ECMWF model. In
four-dimensional variation data assimilation, it is necessary to integrate a
linearized version of the model forward in time. An obvious method is to
use the first iteration of the procedure (3.16) as the basis for the linear
model. The right-hand side terms will now represent perturbations to A1,
and therefore be linear in the evolution variables, Lawless, Nichols and
Ballard (2003).

An example using the UM is shown in Figures 3.1 and 3.2. The model
solves equations (2.1) by a semi-implicit scheme as described in Davies et al.

(2005). The balance constraint is applied by using backward time-weighting
in the semi-implicit scheme as in (3.12). The operational UM has α = 0.7
and the modified version illustrated has α = 1. Figure 3.1 shows that the
decentering has a very small effect on even the small-scale structure of the
potential vorticity Q, while Figure 3.2 shows a significant reduction in the
divergence tendency ∂∆/∂t, which should be small if ε ≪ 1. The larger
values in the operational forecast probably mainly reflect the effect of insuf-
ficiently constrained initial data and insufficiently smooth representations of
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Figure 3.1. Ertel potential vorticity at θ = 330 K predicted by
the UM for 0900UTC 24 January 2006 from data at 0900UTC
on 22 January 2006. Top panel : α = 0.7. Bottom panel : α = 1.0.
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Figure 3.2. Vertical profile of r.m.s. divergence tendency
(s−2) plotted against model level from the same forecasts
as shown in Figure 3.1.

the forcing terms. However, it is also shown by Mohebalhojeh and Dritschel
(2004) that unrealistic divergence tendencies can be created by a poor choice
of prognostic variables.

The constraints (3.4) and (3.5) are enforced in a scale-dependent way in
other methods of initialization. The bounded derivative method of Brown-
ing and Kreiss (1994) is a systematic way of doing this, based on the analysis
above. Digital filter methods (Lynch 1997) apply time-filtering, but allow
a longer time-scale than the time-step to be used to define the frequency
cut-off. Nonlinear normal-mode initialization (Machenhauer 1977) enforces
(3.14) for all inertia-gravity waves with sufficiently small m, thus applying
a speed constraint rather than a frequency constraint. A typical value is
about 50 m s−1. These methods are usually modified to ensure that the
diurnal tidal signal is not filtered out.

Since the nonlinear balance equations, including the sub-grid terms, can
be written as prediction of potential vorticity, Q, together with diagnos-
tic relations to recover the other variables, it is natural to try and exploit
this structure in numerical methods. It was shown by Mohebalhojeh and
Dritschel (2004) that in order to achieve the best approximations to the non-
linear balance solutions, the model should be formulated in variables which
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separate the potential vorticity from variables describing inertia-gravity
waves. Recent work by D. Devlin and D. Dritschel (personal communi-
cation) suggests that decentering is more effective at preserving nonlinear
balance when these variables are used. Exploiting this requires inversion
of the operator L in order to make the change of variables. This is diffi-
cult because of the scale-dependence of the inertia-gravity wave frequency
ω, equation (2.15). This means that L will have a large condition number
which may be made worse by a poor choice of discretization, as discussed in
Section 3.3. It is therefore expensive to invert it, which is why these trans-
formations are not yet in widespread use. The potential benefit of using
these variables for data assimilation is illustrated by Cullen (2003).

A number of the lessons for numerical methods have been pointed out
in this section, in particular the need to preserve large values of |L| in the
spatial discretization, the need to maintain the condition L∆ = A in the
large time-step limit, and the need to preserve accuracy in the advection of
potential vorticity. These issues will be analysed further in Section 3.3 in
a constant-coefficient context. It is not, however, possible to identify what
properties are needed to preserve long-time accuracy for cases where ǫ ≪ 1
from this analysis because of the non-existence of long-time solutions to the
nonlinear balance equations. In order to make further progress, we split
the regime ε ≪ 1 into parts where H/L ≃ f/N , H/L < f/N , and H/L >
f/N , as discussed in Section 2.3. These cases are discussed respectively
in Sections 3.3, 3.4 and 3.5. It is then possible to find solvable systems of
equations appropriate to each case and thus possible in principle to prove
long-time estimates for the errors in numerical methods.

3.3. The quasi-geostrophic regime

This regime is defined by the requirement that the Rossby and internal
Froude numbers Ro and Fr are small and equal. It was introduced by
Charney (1948). This assumption requires the aspect ratio to be small,
typically 10−2 in the troposphere and 10−3 in the stratosphere. Under
these conditions ε =

√
2 Ro =

√
2 Fr and is thus small, so the nonlinear

balance approximation can be made. It is thus appropriate to start from
(3.1), (3.2), (2.10), (2.12), (3.5) and (3.6).

We seek a system of equations which is valid in this regime and can be
solved for large times. The quasi-geostrophic equations are thus derived as a
leading-order approximation in ε which is chosen so that energy is conserved,
which aids the proof of solvability. A higher-order version is derived in
Bourgeois and Beale (1994), but this cannot be solved for arbitrarily large
times. The equations are given below. The justification for the various
approximations is quite complex and details of the analysis are given by
Pedlosky (1987). In particular, in some terms θ is replaced by a hydrostatic
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reference state value θ1(r), chosen such that the reference value N2
0 of N2

is a constant as in Section 2.3. Also f is replaced by a reference value f0

except where it is differentiated. Thus we obtain

∂ζ

∂t
+

u

a cos φ

∂(ζ + f)

∂λ
+

v

a

∂(ζ + f)

∂φ
+ f0∆ = 0,

∂θ

∂t
+

u

a cos φ

∂θ

∂λ
+

v

a

∂θ

∂φ
+ w

∂θ1

∂r
=

1

CpΠ
(Sh + LP ),

Cpθ1
1

a cos φ

∂

∂λ
Π′ − f0v = 0,

Cpθ1
1

a

∂

∂φ
Π′ + f0u = 0, (3.17)

Cpθ1
∂Π′

∂r
− g

θ′

θ1
= 0,

Cpθ1
∂Π1

∂r
+ g = 0,

∂

∂r

(

w

θ1

)

+
∆

θ1
= 0.

Here ζ and ∆ are still defined by (3.1) and θ′ = θ − θ1, Π′ = Π − Π1.
Consistency between equations (3.17) implies that w satisfies

f2
0

∂2

∂r2

(

w

θ1

)

+ N2
0∇2

r

(

w

θ1

)

= (3.18)

− g

θ2
1

∇2
r

(

ur · ∇rθ − 1

CpΠ
(Sh + LP )

)

+ f0
∂

∂r

(

1

θ1
ur · ∇(ζ + f)

)

.

In the absence of source terms, these equations after some manipulations
imply the potential vorticity conservation law

∂Q

∂t
+

u

a cos φ

∂Q

∂λ
+

v

a

∂Q

∂φ
= 0,

Q =
1

θ1

(

N2
0 (ζ + f) + f0

∂

∂r

(

gθ′

θ1

))

.

(3.19)

The horizontal velocities and potential temperature can be calculated from
Q by first using the third, fourth and fifth equations of (3.17) to give a
Poisson equation for Π′ given Q:

f0Q =
N2

0 ff0

θ1
+ Cp

(

N2
0∇2

rΠ
′ + f2

0

∂2Π′

∂r2

)

. (3.20)

The horizontal velocities are then calculated from the third and fourth equa-
tions of (3.17) and the potential temperature from the fifth equation. w can
then be calculated from the final equation.
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Equation (3.20) can be solved for Π′ given suitable boundary conditions.
Neumann boundary conditions on Π′ imply that θ′ is given on horizontal
boundaries and u or v on lateral boundaries. The proofs of solvability
in Bourgeois and Beale (1994), which use plane geometry, assume periodic
boundary conditions in the horizontal and constant values of θ′ at the upper
and lower boundaries. Other proofs are given in Majda (2003) and Bennett
and Kloeden (1981, 1982).

The proofs cited above show that solvability of equations (3.17) depends
on the fact that equation (3.19) cannot generate any values of Q outside the
range of the initial values. The constant-coefficient elliptic equation (3.20)
is used to find u, v and θ′ from Q, and this is shown in Bourgeois and Beale
(1994) to give a bound on the gradients of (u, v) in terms of bounds on Q
and its derivatives:

‖ ∇u ‖L∞ + ‖ ∇θ′ ‖L∞≤ C ‖ Q ‖L∞

(

1 + log+ ‖ Q ‖Hs

‖ Q ‖L∞

)

(3.21)

where s ≥ 2. The L∞ norm is the maximum norm, and Hs measures the
L2 norm of all derivatives up to order s. The + superscript indicates that
only positive values are used. C is a constant. Precise definitions are given
in Bourgeois and Beale (1994). The maximum value of Q is independent of
time, so it is necessary to control the mean-square value of the derivatives
of Q. It is shown by differentiating (3.19) that the rate of increase of the
gradient of Q is controlled by the gradients of u, which can be estimated
from (3.21). This gives an estimate for any time t that

‖ Q(t) ‖Hs≤ C ‖ Q(0) ‖Hs exp
(

C(eCt‖Q(0)‖Hs − 1)
)

. (3.22)

This can be calculated for any t given the initial data for Q, and provides
the required long-time estimate.

In order to ensure that a numerical approximation to (3.17) remains
bounded for large times, in other words is nonlinearly stable, it is neces-
sary to be able to derive finite-dimensional analogues of the estimates (3.21)
and (3.22).

We first have to maintain the bound on Q by its initial values. If Q is a
prognostic variable, this can be achieved by using a monotonicity-preserving
advection scheme. There is a very large literature on this topic, though much
of it deals with enforcing monotonicity in high-speed flow problem with
shocks. The method has the disadvantage that monotonicity enforcement
inevitably involves diffusion and thus energy loss. This can be limited by
use of sufficiently selective filters. For instance, recent work by Zerroukat,
Wood and Staniforth (2005) demonstrates an appropriate selective filter for
cases where non-monotonicity can only be generated by errors in upstream
interpolation. The bound on Q can also be maintained by a fully Lagrangian
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method such as one based on contour dynamics, as in Mohebalhojeh and
Dritschel (2004). Such methods are not inherently diffusive.

The prescription above could be followed in solutions of (2.1) or (2.11)
if the potential vorticity is used as a prognostic variable as in Mohebalho-
jeh and Dritschel (2004). This will be a good approximation to Q in the
quasi-geostrophic regime. We will show how a similar requirement may be
achievable without introducing new prognostic variables in Section 3.4.

Another approach is to note that (3.19), together with the non-divergence
of the advecting velocity (u, v) resulting from the third and fourth equations
of (3.17), implies that all moments

∫

Qn are conserved. A numerical method
can only conserve a finite number of moments, and a popular method is
to conserve only the first and second moments, following Sadourny (1975).
This method has the disadvantage that, even if the distribution of Q is well-
resolved at the initial time, it may not stay well-resolved. Conservation of
the integral of Q2 may thus result in variance being incorrectly retained in
resolved scales.

The derivation of (3.21) involves controlling the second derivatives of Π′

resulting from the solution of the elliptic equation (3.20). This requires
the approximation to the elliptic operator to satisfy a discrete maximum
principle. This is a standard requirement in numerical solution of elliptic
equations, and is discussed, for instance, by Ganzha (1996, p. 216). It leads
to the standard five-point discrete approximation to the Laplacian in two
dimensions. The condition will be satisfied if the three-dimensional Lapla-
cian in (3.20) is approximated by a seven-point stencil. However, if the
derivation of (3.20) from (3.17) is carried out at the discrete level, a seven-
point stencil is only obtained if u is held at grid-points staggered from Π in
the φ-direction, v at grid-points staggered from Π in the λ-direction, and
θ at grid-points staggered from Π in the r-direction. This is illustrated in
Figure 3.3. This horizontal staggering is referred to as the Arakawa D-grid
(Arakawa and Lamb 1977), and the vertical staggering as the Charney–
Phillips grid (Arakawa and Konor 1996). If any of the other grids shown in
Figure 3.3 is used to solve (3.17), the solution of (3.20) is likely to oscillate
in space, leading to instability. While it may be possible to control this
using filtering, significant inaccuracy will result.

We now need to consider the conditions for a numerical solution of (3.17)
to stay close to a solution of (2.11). In Section 2.2 we showed that this
required the solution of (3.12) to stay close to that of (3.14). Equation (3.13)
showed that this depends on the condition ω2δt2 ≫ 1. When the spatial
discretization is considered, the eigenvalue ω2 of L will be approximated
by an eigenvalue ωh; so the condition becomes ω2

hδt2 ≫ 1. In the quasi-
geostrophic case, this can be analysed because L is a constant-coefficient
operator. Such analyses are given in Arakawa and Lamb (1977) and Durran
(1998) for various spatial discretizations. If the horizontal grids B or D
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Figure 3.3. Top line: Various horizontal staggerings of variables
for solving (3.17). These are referred to as Arakawa grids B, C
and D. Bottom line: Two vertical staggerings, the Lorenz (L) and
Charney–Phillips (CP).

shown in Figure 3.3 are used, the smallest-scale inertia-gravity waves become
stationary so that ωh = 0, and the condition for (3.17) to be accurate will
be violated. Only grid C gives satisfactory behaviour. In the vertical, the
required condition is satisfied if the Charney–Phillips grid is used (Thuburn
2006).

There is thus a clash between the requirements on horizontal staggering
of variables between the need to ensure that the discrete L is large when it
should be, and the need to obtain stable solutions of (3.20). The Charney–
Phillips grid, however, is optimal in the vertical on both counts. This clash
indicates that the use of semi-implicit time integration is not sufficient to
ensure accurate treatment of the limit solution, but spatial differencing is-
sues must also be considered. Various methods have been used to address
the issue. In Lin and Rood (1997) the C- and D-grids are both used for the
parts of the calculation for which they are suited. However, interpolation
between the grids at some point is unavoidable. A compromise horizon-
tal arrangement called the B-grid is shown in Figure 3.3. Analysis, such
as in Bryan (1989), shows that the B-grid is superior when the horizontal
grid-length of the model is greater than the Rossby radius, but the C-grid
is superior when the grid-length is less than the Rossby radius. In the at-
mosphere the internal Rossby radius for the most energetic parts of the
flow is more like 1000 km, and is well-resolved. Thus the C-grid is more
appropriate. The importance of preventing incorrectly small values of ωh
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is greatest in semi-implicit schemes, where the left-hand side of (3.12) has
to be inverted. In explicit schemes, the problems can be managed by using
filtering procedures. Thus the original Met Office Unified Model (Cullen
and Davies 1990) used split-explicit finite differencing on the B-grid in the
horizontal and the Lorenz grid in the vertical, while the current version
(Davies et al. 2005) uses semi-implicit time integration on a C-grid in the
horizontal and the Charney–Phillips grid in the vertical.

The difficulties in establishing an optimal horizontal representation can
be resolved by using vorticity and divergence, rather than u and v, as prog-
nostic variables. This is expensive in finite-difference methods, because of
the need to solve elliptic equations to recover the velocity components. How-
ever it is a natural choice when using a spectral horizontal representation,
which is very popular for global models. The elliptic problems then become
trivial in spectral space. Under the assumptions made in this section, the
operator L is separable in the horizontal and vertical. It has coefficients
that depend only on the vertical. If equation (3.12) is discretized in the
vertical, L becomes a matrix. Transforming variables to diagonalize this
matrix means that the solution procedure can be decoupled into a set of
constant-coefficient two-dimensional problems for each vertical mode: see
Durran (1998, p. 387). A spectral model is very well-suited to solving these.
The same transformation will reduce (3.20) to a set of two-dimensional prob-
lems. In practice, the scale-dependence of ω shown in (2.15) means that L

has a large condition number. Standard iterative solvers will find it difficult
to invert L accurately. The method of transforming the variables, followed
by a solution in spectral space, will invert it to machine precision, which
may be an important advantage. It should be noted that this method can
be used to solve semi-implicit discretizations of (2.1): it does not depend on
the approximations made in deriving (3.17). The spectral method is thus
well-suited to maintaining the accuracy of (3.17) and to solving (3.20).

The advantages of spectral methods discussed above have to be balanced
against the computational overhead of the transforms between grid-point
and spectral space. They also maintain quadratic conservation properties,
such as those discussed by Sadourny (1975). However, they are not well-
suited to maintaining the bounds on Q, since there is no way of enforcing a
monotonicity property. The combination of a spectral representation with
semi-Lagrangian advection, which can be made to enforce monotonicity, has
therefore become popular, as in the ECMWF model (Ritchie et al. 1995).

3.4. Large-scale flows

For this purpose we consider large-scale as a horizontal scale large relative to
the Rossby radius, so that Ro < Fr, and we also assume Ro to be small. It is
then appropriate to make the shallow atmosphere and hydrostatic assump-
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tions, as in (2.11), and the geostrophic approximation, but the assumptions
that the static stability and Coriolis parameter are close to reference values
are not made. In particular, this means that the geostrophic wind is not
non-divergent, so it is better to work directly from (2.11) rather than in-
troduce the vorticity and divergence equations (3.1). The semi-geostrophic
equations introduced by Hoskins (1975) are then appropriate, but note that
f is not assumed constant. The system is

Dug

Dt
+ (−fv, fu) + Cpθ∇rΠ

′ = 0,

Dθ

Dt
=

1

CpΠ
(Sh + LP ),

∂ρ

∂t
+ ∇ · (ρu) = 0,

Dq

Dt
= Sq − P,

prefΠ
1

γ−1 = ρRθ,

Cpθ

a cos φ

∂

∂λ
Π′ − fvg = 0,

Cpθ

a

∂

∂φ
Π′ + fug = 0,

Cpθ
∂Π′

∂r
− g

θ′

θ0
= 0.

(3.23)

In these equations, ug = (ug, vg) is the geostrophic wind, defined by the
sixth and seventh equations. Comparing (3.23) with (2.11) shows that the
momentum has been approximated by its geostrophic value, but no other
approximations have been made. In particular, the trajectory is not ap-
proximated, so that D

Dt = ∂
∂t + u · ∇. It can be shown that the resulting

equations conserve energy in the absence of forcing terms (Cullen, Norbury,
Purser and Shutts 1987). The conserved energy is

E =

∫

ρ
(

1
2(u2

g + v2
g) + CvT + gr

)

a2 cos φdr dλ dr. (3.24)

This differs from the energy (2.2) conserved by equations (2.1) by the re-
placement of the kinetic energy by its geostrophic value.

Most analyses of (3.23) have been carried out for constant f , which allows
the equations to be solved by the geostrophic coordinate transformation,
Hoskins (1975). However, this assumption is inappropriate for large-scale
flow. An analysis of the spherical case is given by Cullen, Douglas, Roulstone
and Sewell (2005). A review of the mathematical theory of these equations
is given by Cullen (2006).
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Equations (3.23) differ in an important respect from the nonlinear bal-
ance equations considered in Section 3.2. They contain two different veloc-
ity fields, representing the trajectory and the momentum respectively. This
looks strange as a direct approximation to (2.11). However, it arises natu-
rally if the equations are considered as Lagrangian averages of (2.11). The
analysis of Andrews and McIntyre (1978) shows that the trajectory should
represent the Lagrangian-averaged velocity, but the momentum-like quan-
tity is a ‘pseudo-momentum’ which includes the effects of the waves excluded
by the averaging. Such equations arise naturally when deriving asymptotic
limit equations from Hamilton’s principle. A systematic review is given in
Holm, Marsden and Ratiu (2002). This idea has been exploited in sub-grid
models, with the aim of modelling unresolved motions without introducing
energy dissipation. Examples are the Gent–McWilliams parametrization
of oceanic eddies (Gent and McWilliams 1996), and the ‘alpha’ model of
turbulence (Foias, Holm and Titi 2001). Equations (3.23) can be inter-
preted as a Lagrangian average of (2.11) under the assumption that the
pseudo-momentum is geostrophic. This is not the same as assuming that
the momentum is geostrophic, but still assumes rotation-dominated flow.

The structure of these equations can be understood by rewriting them in
the form used by Schubert (1985). This gives

Q





u
v
w



 + Cpθ
∂

∂t
∇Π′ =







f2ug

f2vg
g
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, (3.25)
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Equation (3.25) can be rewritten as an elliptic equation for ∂Π/∂t by using
the last three equations of (3.23) to give

1

1 − γ

ρ

Π

∂Π

∂t
+

ρCpθ

g

∂

∂r

(

∂Π

∂t

)

+ ∇ ·
[

CpρθQ−1∇
(

∂Π

∂t

)]

= (3.26)

∇ · ρQ−1





f2ug

f2vg
g
θ (Sh + LP )



.

This is an elliptic equation for ∂Π/∂t if Q is positive definite. Since Q

is purely a function of Π, this is a constraint on the pressure field. It
is shown by Shutts and Cullen (1987) that this corresponds to symmetric

stability , that is, stability of the resulting flow to parcel displacements, ne-
glecting perturbation pressures arising from the displacement. They do this
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by showing that a geostrophic and hydrostatic state with Q positive definite
corresponds to a minimum energy state with respect to such parcel displace-
ments. The semi-geostrophic approximation is only relevant for such flows,
since flows which are unstable in this sense will evolve on a faster time-scale
than f−1. The manifestation of this in the horizontal is inertial stability,
and in the vertical is static stability. Shutts and Cullen also show that the
neglect of perturbation pressures is justified in the large-scale regime where
semi-geostrophic theory is appropriate.

If (3.26) can be solved, the trajectory u can be deduced from (3.25). How-
ever, it is not obvious that the positive-definiteness of Q can be maintained
during the time evolution. In order to study this, following Cullen and Feld-
man (2006), we introduce the Lagrangian map F (t,x), where x = (λ, φ, r) is
a shorthand for the three-dimensional space coordinates. This map takes ini-
tial parcel positions to positions at time t, so that in particular F (0,x) = x.
The map is assumed to conserve mass. This means that the Jacobian of
F (t,x) is ρ(t,x)/ρ(0,x). We use the notation F (t,x)#ρ(0,x) = ρ(t,x)
as shorthand for this property. Now write equations (3.23), omitting the
moisture equation and forcing terms, in the Lagrangian form

∂tZ(t,x) − f∂tF (t,x) = fJZ,

F (t,x)#ρ(0,x) = ρ(t,x),

prefΠ
1

γ−1 = ρRθ,

Z(0,x) = f−1Cpθ
0∇Π0(x).

(3.27)

Here, Z(t,x) = f−1Cpθ∇Π′(t, F (t,x)), the first equation of (3.27) corre-
sponds to the first two equations of (3.23) and the second equation corre-
sponds to the third equation of (3.23).

We now use this formulation to define an energy minimizer with respect
to infinitesimal parcel displacements, assumed to take place over a virtual
time δ. Given a state Π̃(0,x), ũ(0,x), ṽ(0,x), θ̃(0,x), with ρ̃(0,x), T̃ (0,x)
calculated from Π̃(0,x) using the equation of state and the thermodynamic
relations, define the energy Ẽ by

Ẽ =

∫

ρ̃

(

1

2
(ũ2 + ṽ2) + CvT̃ + gr

)

dx. (3.28)

Define the displacement by the Lagrangian map F (δ,x). The assumption
of no perturbation pressure due to the displacement means that

Z(δ, F (δ,x)) − Z(0, F (0,x)) = f(F (δ,x) − F (0,x)),

F (δ,x)#ρ̃(0,x) = ρ̃(δ,x), (3.29)

Z(0,x) = (ṽ,−ũ).

We calculate the change to the energy by substituting ρ̃(δ,x), ũ(δ,x), ṽ(δ,x)
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and T̃ (δ,x) into (3.28). Then Theorem 4.1 of Cullen (2006) states that Ẽ
is stationary with respect to these variations if Z = f−1Cpθ̃∇Π̃. Thus a
solution of (3.27) corresponds to a stationary energy state. The requirement
that the solution is a minimizer, rather than just stationary, comes from
the physical consistency discussed above. The mathematical theory of the
semi-geostrophic equations shows that it is always possible to find an energy
minimizer, and thus a physically consistent solution of the equations. Other
possible solutions are ignored. The effect is that it is always possible to find
a time evolution such that Q remains positive definite, given initial data
such that Q is positive definite. One result of this is that there can be no
horizontal pressure gradients along the equator, as discussed by Cullen et al.

(2005). Details of the theorems are reviewed in Cullen (2006).
The situation is thus different from the nonlinear balance equations, (3.1),

(3.2), (2.10), (2.12), (3.5) and (3.6). These also reduce to a variable-
coefficient equation but whose ellipticity cannot be guaranteed in the time
evolution. There are no solvability issues with the quasi-geostrophic equa-
tions because they reduce to solving a constant-coefficient elliptic equation,
(3.20). However, no system of limit equations valid on large scales can be
reduced to a constant-coefficient elliptic problem.

Another feature of the solutions of (3.23) is that they can be discontin-
uous. This does not conflict with the idea that the equations represent
a Lagrangian average. There is no reason why air parcels with different
physical properties should not come close together in a (near-)discontinuity.
An example is discussed in Section 4.3, where the ability to capture such a
discontinuity in a conventional numerical method is explored.

The condition for positive-definiteness of Q is harder to maintain in the
vertical if moist effects are allowed for. This is because we can write the LP
term that appears in the second equation of (3.23) as

LP = L
dqsat

dt
≃ L

dqsat

dT

dT

dt
≃ LΓw (3.30)

where Γ now represents the moist adiabatic lapse rate (Houghton 2002,
p. 21). Since this term is proportional to w, it should be transferred to the
left-hand side of (3.25). The effect is to reduce the diagonal term in Q and
make it easier to violate the condition for Q to be positive definite. Though
no rigorous mathematical treatment has been given in this case, computa-
tions by Holt (1990) suggest that (3.25) can still be solved for general data.
These computations demonstrate that the solutions may involve discontin-
uous mass transport when the condition q ≥ qsat is only satisfied in parts
of the domain. This is still compatible with the interpretation of the equa-
tions as a Lagrangian average of (2.1). Representing this type of process in
a sub-grid model to be used with equations (2.1) has been a major research
challenge; see Smith (1997).
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A priori estimates of the difference between solutions of (3.23) and (2.11)
or (2.1) given in Cullen (2006) show that the difference is O(RoL(Ro/Fr)2)
for small RoL. RoL is the Lagrangian Rossby number defined as the ratio
of D/Dt and f . It is small if the rate of change of wind direction following
a fluid particle is small compared with f . At latitude 45◦ that requires the
direction of a trajectory to change by less than 45◦ in 24 hours. The effect of
this is illustrated in Figure 3.4. Trajectories are plotted from a UM forecast
for a very active period of weather in January 2005. Making allowance for
the Mercator projection, the condition on the trajectory direction is only
violated in the trajectory starting furthest west off the Californian coast,
and in the lowest level trajectory as it crosses the Rockies. This suggests
that the approximation will be valid most of the time for scales represented
by this model, which has an averaging scale of about 120 km.

We now consider conventional finite-difference approximations to (3.26).
In the case of small disturbances, Q is well approximated by the diagonal
matrix 



f2 0 0
0 f2 0
0 0 N2



.

Equation (3.26) is naturally solved at pressure points. Then ug and vg

are naturally held at the positions occupied by u and v on the D-grid in
Figure 3.3 and θ will be held as indicated on the Charney–Phillips grid in
Figure 3.3; u, v and w are naturally held on the C-grid and Charney–Phillips
grid. As in the quasi-geostrophic case, this arrangement is not ideal in the
horizontal, because the accurate treatment of the right-hand side requires
ug at vg-points and vice versa.

In general, the structure of equation (3.26) suggests that it could be incor-
porated in a semi-implicit discretization of (2.1), analogous to the derivation
of equation (3.12). This is difficult to achieve, because of the presence of
the two different velocity fields u and ug. In addition, it is found that in
circumstances where (3.23) has discontinuous solutions, conventional finite-
difference methods attempt to maintain smoothness by allowing Q not to be
positive definite. This then results in computational instability (see Cullen
(2006, Section 5.3.3)). In such cases, it is not even clear if the Eulerian form
of advection used to write (3.25) makes sense.

To make further progress, we therefore need to base the discretization on
the Lagrangian formulation of the equations (3.27), which means finding
the Lagrangian map F (t,x) by using all the constraints in equations (3.27).
This requires methods where advection is treated in a Lagrangian manner.
When solving (2.11) in circumstances when (3.23) is accurate, we then seek
a Lagrangian map F close to that which satisfies (3.27).

We first have to establish a condition on Π such that the matrix Q de-
rived from it is positive definite. Equations (3.23) and the definition of the
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reference state, (2.8), show that

Cp∇Π =

(

fvg

θ
,−fug

θ
,−g

θ

)

. (3.31)

Then it can be seen from (3.25) that, in the case of Cartesian geometry
where f is constant, Q is the matrix of second derivatives of Π with all terms
multiplied by θ and the additional terms f2 on the diagonal. If variations

Figure 3.4. Top: Back trajectories from Mace Head for
12UTC on 11 January 2005. The total time covered is
96 hours, with points marked at 12 hour intervals.
The trajectories were computed from 3-hourly data.
Bottom: The vertical position of the trajectories (m).
Source: Atmospheric Dispersion Group, Met Office.
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of the multiplying factor θ are ignored, the condition for Q to be positive
definite is that CpΠ + 1

2(x2 + y2) is convex, where x and y are Cartesian
coordinates. When variations of θ are included, the equivalent condition is
derived by Shutts and Cullen (1987). In spherical geometry, the condition
is derived by Cullen et al. (2005), and is referred to as involutivity. In
both these cases, it can be shown that the condition prevents oscillatory
behaviour of Π, in the same way that a convex function cannot oscillate.

Another important feature of the solutions of (3.27) is that only integrals
of fluid properties are well-defined. This allows the solutions to be singular.
Physically it means that the behaviour of infinitesimally small volumes of
the fluid is irrelevant. Thus we choose a function ϕ which is very smooth,
and define a ‘weak’ solution of (3.27) on a time interval (0, τ) by requiring
that, for any ϕ ∈ C∞([0, τ ] × Ω : R3),

∫

Ω×(0,τ)

[

Z(t,x) · ∂tϕ(t,x) − fF (t,x)∂tϕ(t,x) + fJZ(t,x) · ϕ(t,x)
]

dt dx

+

∫

Ω
f−1θ0∇Π0(x) · ϕ(0,x) dx = 0. (3.32)

Suppose that we are given initial data Π0(x), assumed to be an involutive
bounded non-negative function defined on an open set Ω ⊂ R3. Let ρ0 and
θ0 be calculated from Π0 by the hydrostatic relation. In the case where
f is constant, Cullen and Feldman (2006) proved that we can find for any
t ∈ (0, τ) a Lagrangian map Ft = F (t,x) : Ω → Ω satisfying Ft#ρ0 = ρ(t,x)
and such that (3.32) is satisfied. This map also has an inverse F ∗

t such that
F ∗

t ◦ Ft(x) = x for almost all x (i.e., it may not exist for infinitesimal
masses of fluid). This property means that the Lagrangian map F satisfies
the ‘flow’ property that Ft1+t2 = Ft1 ◦ Ft2 . This is required for the solution
to make physical sense, and not to depend on an arbitrary discretization of
the time interval. This proof has not yet been extended rigorously to the
case of variable f . Cullen et al. (2005) describe the formal arguments which
show that the result is expected to hold in that case.

Now consider numerical methods for approximating the Lagrangian map.
The most widely used Lagrangian-based methods are the semi-Lagrangian
methods introduced by Robert (1982). A review of these is given by Stan-
iforth and Côté (1991). They are used in both the UM and the ECMWF
model, as well as many others. They have the advantage that the data
are mapped onto an Eulerian grid at each time-step, thus allowing com-
putations of terms other than advection to be carried out easily. They
also have the advantage of being unconditionally stable for time integra-
tion unless the trajectories cross; see Durran (1998, Chapter 6). This
was the original reason for their introduction. Enforcement of the con-
dition F (t,x)#ρ(0,x) = ρ(t,x) requires the discrete Lagrangian map to be
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mass-preserving. This is the motivation for conservative semi-Lagrangian
methods such as Zerroukat, Wood and Staniforth (2004). However, such
methods are hard to use and have not yet been implemented in production
models. They are discussed in more detail in Section 3.6. The proof that
(3.32) can be solved depends on the fact that a Lagrangian map cannot
create new values of the quantity to which it is applied, as in the advection
of Q in the quasi-geostrophic case. In the present case the condition has
to be applied separately to the momentum components and the potential
temperature. This again favours the use of monotone interpolation schemes,
as discussed in Section 3.3. However, the remapping to grid-points every
time-step means that strictly monotone schemes will be too diffusive, and
more selective schemes such as that of Zerroukat et al. (2005) are needed.

The trajectory is derived implicitly by the solution procedure. This sug-
gests that an implicit calculation of the trajectory departure points is desir-
able. An iteration like (3.16) can be used for this purpose, as in Yeh et al.

(2002) and Cullen (2001). In Cullen (2001), the increased accuracy of doing
this is demonstrated. In White (2003) the dynamical consistency resulting
from this choice is discussed. The application of this scheme to the UM is
described in Diamantakis, Davies and Wood (2007). An example is shown
in Figure 3.5. The top two panels use the operational version of the UM
with the departure point calculation extrapolated in time to obtain second-
order accuracy. They show that the vertical motion is greatly exaggerated
in a run with a 30-second time-step as compared to a run with a 10-second
time-step. If the departure-point calculation is iterated once in time, as
in Cullen (2001), then the results shown in the bottom panel are obtained
using a 40-second time-step. The results are close to that obtained with
the operational scheme and a 10-second time-step, showing that the time
iteration is beneficial and cost-effective.

The proof of existence of solutions to (3.23) depends critically on the in-
volutivity of Π, which prevents oscillatory behaviour and thus gives consid-
erable stability to the time evolution, as demonstrated in Cullen (2002a).
This is why large-scale disturbances persist. However, on smaller scales,
where semi-geostrophic theory is not applicable, there is no reason why
solutions of (2.1) or (2.11) should obey this condition and oscillatory and
unstable behaviour is readily observed. Section 4.4 illustrates such a case,
where the instability is triggered by orography. The direct solution of (2.1)
is quite successful, though it has clearly not converged. This is, however, a
rather simple case. In real cases, satisfactory solutions to (2.1) in regions
where Q is not positive definite can usually only be obtained by using a
horizontal grid-length of no more than 1 km. Operational averaging scales
are normally much greater than this, except for local models. In order to get
satisfactory performance with coarser averaging scales, the sub-grid model
has to enforce the involutivity of Π in order to prevent unrealistic unstable
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Figure 3.5. Cross-sections of vertical velocity (m s−1) from
UM integration over the Alpine region plotted against
height (m) and latitude relative to the centre of the domain
(degrees). Top: Explicit departure-point calculation,
time-step 30 s, decentering parameter α = 0.7. Middle: As
above with time-step 10 s and α = 0.6. Bottom: Iterated
departure-point calculation, time-step 40 s, α = 0.6.
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circulations developing. Since typical time-averaging scales in the atmo-
sphere are much less than f−1, but greater than N−1, it is usual to enforce
only the condition that ∂θ/∂r ≥ 0, modified for the effects of moisture
as shown in (3.30). Recent collections of papers in this area are given in
ECMWF (2002) and ECMWF (2005).

The long-term behaviour of solutions to (3.23) was studied in the shallow
water case by Cullen (2002a). The cascades of vorticity to small scales that
are a feature of classical two-dimensional turbulence, Leith and Kraichnan
(1972), are inhibited, and disturbances persist for long times. The long-
lived anomalous circulations observed in the extra-tropical atmosphere thus
represent the natural dynamics of rotation-dominated flows. This is there-
fore the most appropriate regime in which to study the requirements for
maintaining long-time accuracy in numerical solutions.

This behaviour means that, if flows on a scale larger than the Rossby
radius are initially well-resolved, then they will stay well-resolved. Nu-
merical methods such as those of Sadourny (1975) may then be beneficial
in preserving long-term accuracy. In particular, it is tempting to suggest
that schemes which conserve

∫

Q2, where Q is the Ertel potential vorticity,
would be appropriate. However, fronts can form in three-dimensional flow.
As demonstrated in Section 4.3, these are associated with apparent poten-
tial vorticity sources in an Eulerian sense, even though potential vorticity
is still conserved in a Lagrangian sense. These solutions could not develop
if schemes like those of Sadourny (1975) were used. It is therefore a major
research question how to preserve long-term accuracy in this regime.

3.5. Small-scale flows with ε ≪ 1

In this case we assume that the aspect ratio may be O(1), but that the
horizontal extent is sufficiently small for plane geometry to be used. The
assumption that ε ≪ 1 for such aspect ratios means that U/NH has to be
small. The solvability condition for the nonlinear balance equations is not
necessarily satisfied, as noted in Section 3.2. The difficulty is caused by the
flow-dependent coefficients in the elliptic problem that has to be solved. If
only small-scale flows are considered, the flow-dependent coefficients are not
required. Consider the equation for the evolution of θ:

∂θ

∂t
+ ur.∇rθ + w

∂θ

∂r
=

1

CpΠ
(Sh + LP ). (3.33)

If the right-hand side terms of (3.33) are ignored, then it can be shown that
the assumption U/NH ≪ 1 means that ∇rθ ≪ H

L
∂θ
∂r . We can therefore

assume a hydrostatic reference state θ1(r) with a reference value N2
0 of N2

as in Section 3.3. Comparison of the terms in equation (3.33) then shows
that w/ur ≪ H/L, so that the vertical advection can be neglected in the
momentum equations of (2.11). Majda (2003, Chapter 6) shows that an
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energetically consistent system can then be obtained by approximating the
pressure gradient term and replacing the continuity equation by ∇r ·u = 0.
The resulting system is

Drur

Dt
+ (−fv, fu) + Cpθ1∇rΠ

′ = 0,

Cpθ
∂Π′

∂r
− g

θ′

θ0
= 0,

∇r · (u) = 0,

Drθ

Dt
+ w

∂θ1

∂r
=

1

CpΠ
(Sh + LP ),

Π = (p/pref)
−R/Cp ,

p = ρRθΠ.

(3.34)

The first and third equations in (3.34) reduce to the equations for two-
dimensional incompressible flow. The nonlinear balance relation, (3.6), re-
duces to

−2J(u, v) + ∇r · Cpθ1∇rΠ
′ −∇r · (fv,−fu) = 0. (3.35)

These equations can be solved by integrating the first equation of (3.34)
forward in time, with the pressure gradient terms determined implicitly by
using (3.35) to enforce the incompressibility constraint, the third equation
of (3.34). Equation (3.35) together with the hydrostatic relation (the second
equation of (3.34)) can be used to determine Π and θ. It is then possible to
derive w from the evolution equation for θ.

Solvability of these equations follows from the solvability of the equations
for two-dimensional incompressible flow; e.g., Chemin (2000). This depends
on the fact that the vorticity ζ defined by (3.1) is bounded by its initial
values, and that the elliptic equation (3.35) for Π′ satisfies second derivative
estimates analogous to (3.22). This ensures that the horizontal velocity
fields stay smooth for smooth initial data. However, the vorticity typically
cascades to small scale, so an initially well-resolved solution will not stay
well-resolved. The remaining steps are explicit calculations.

A discrete version of the first requirement can be achieved in numerical
models by using ζ as a prognostic variable, and advecting it with a mono-
tonicity-preserving scheme. The alternative method, based on Sadourny
(1975), of enforcing conservation of ζ2 has the disadvantage of forcing the
variance of ζ to be conserved on resolved scales, which is inappropriate in
the presence of cascades of variance to small scales. The second require-
ment can be met if the elliptic equation (3.35) for Π′ satisfies a discrete
maximum principle. As in (3.19), this favours the use of the D-grid for
the velocity components. The explicit calculation of θ from Π needs the
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Charney–Phillips grid, as the discrete version of this calculation on the
Lorenz grid is impossible because of the computational mode (Arakawa and
Konor 1996).

The behaviour of this system is analysed in Majda (2003). The difficulty is
that the first two equations of (3.34) evolve independently at each value of r.
There is thus no control over the vertical scale of the solutions. In particular,
values of ∂Π/∂r may become very large, leading to unrealistic values of θ and
hence w. The problem is that the solutions violate the assumption U/NH ≪
1 as H is reduced. This is called ‘zigzag’ instability. In Majda (2003)
it is shown that the problem can be resolved either by vertical viscosity,
which cannot be physically justified in this strongly stratified case, or by
rotation. As the vertical scale reduces, it may be that the condition NH =
fL becomes valid while the Froude number is still small. In that case the
quasi-geostrophic equations derived in Section 3.3 apply, and the vertical
coupling is restored.

As will be illustrated in Section 4.2, the assumption ∇r ·ur = 0 is very re-
strictive. A scheme with higher-order accuracy, but avoiding the solvability
condition (3.7), involves iterating the solution procedure above. Thus, the
calculated w is used via Richardson’s equation (2.12) to generate a value of
∇r ·ur. This is then used along with ζ to calculate u. In Ford et al. (2000)
such an iterative procedure is developed in a rather more general context.
Numerical solutions described by McIntyre and Norton (2000) show its ef-
fectiveness in shallow water integrations. These did not use sufficiently high
resolution for (3.7) to be violated. The convergence of such an iteration in
cases where (3.7) is violated is uncertain.

The solution procedure above is very attractive for numerical modelling,
because it only involves solving two-dimensional rather than three-dimen-
sional elliptic problems. However, the instability of this regime means that
such methods will be of limited applicability.

3.6. Small-scale flows with ε ≫ 1

In this case we assume that the aspect ratio may be O(1), but that the
horizontal extent is sufficiently small for plane geometry to be used. We
thus use Cartesian coordinates (x, y, z) and assume that f is a constant.
Equations (2.27), with the moisture equation and forcing terms restored,
become

Du

Dt
+ f(−v, u, 0) + Cpθ∇Π′ − g

θ′

θ0
r̂ = 0,

∂ρ

∂t
+ ∇ · (ρu) = 0,

Dθ

Dt
=

1

CpΠ
(Sh + LP ), (3.36)
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Dq

Dt
= Sq − P,

prefΠ
1

γ−1 = ρRθ.

We showed in Section 2.3 that the characteristic velocity U ≪ c for all
cases of interest. This means that equation (2.34) can be approximated
by (2.35). Energetically consistent approximations to (3.36) that achieve
this include the anelastic approximations of Ogura and Phillips (1962) and
Lipps and Hemler (1982). In these approximations, the continuity equation
is replaced by the constraint ∇ · (ρ0u) = 0, where ρ0 is given by either the
reference state (2.8) or the reference state used in (3.34). This reference state
has also to be used in the momentum equations in order to retain energetic
consistency. Issues with the effect of this approximation on convergence to
the anelastic limit are discussed below. It is assumed that the scale is still
large enough for the real viscous and conductive terms to be neglected.

With either choice of reference state, these approximations reduce equa-
tions (3.36) to

Du

Dt
+ f(−v, u, 0) + Cp∇(θ0Π

′) − g
θ′

θ0
r̂ = 0,

∇ · (ρ0u) = 0,

Dθ

Dt
=

1

CpΠ
(Sh + LP ), (3.37)

Dq

Dt
= Sq − P,

prefΠ
1

γ−1 = ρRθ.

The conserved energy density is

ρ0

(

1

2
u2 + gr + CpΠ0θ

)

. (3.38)

Since, in effect, this approximation makes the speed of sound infinite, it is
not valid on large scales where the finite sound speed matters; see Davies,
Staniforth, Wood and Thuburn (2003).

In the case where f = g = 0, (3.37) shows that ∇ · θ0∇Π is of order
|u|2. Thus the variations in Π will be of the same order as the variations
in θ, with an additional variation of O(|u|2). The equation of state then
shows that ρ will have the same order of magnitude of variations as Π.
In the special case of uniform θ, this means that the error in using the
reference state value of ρ is of order (Mach number)2. This is the case
where convergence of compressible flow to incompressible flow has been
proved (Majda 1984). There will also be an error related to the departures
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in θ from its assumed reference value. In general, this error will increase
with the size of the variations in θ in the initial data. It will not be related
to the Mach number. The error will be reduced in strongly stratified flows
where θ remains close to a reference state, even though that reference state
has large variations in θ. This was the case treated in Section 3.5 where the
dynamics is hydrostatic and can be described by (3.34).

We therefore consider the case where U/(NH) is large, so that the strat-
ification is not dominant. This will be particularly true of the circula-
tions in convective clouds, for instance. We avoid the difficulties caused by
the nonlinearity by using a Lagrangian form of the equations, as in Sec-
tion 3.4. Thus write x = (x, y, z) and define a Lagrangian map F (t,x)
with F (0,x) = x. The conserved mass density of a fluid element is now
ρ0(z). The continuity equation is expressed by the condition F (t,x)#ρ0 =
ρ0. Define Z(t,x) = (−fv(t, F (t,x)), fu(t, F (t,x)),−gθ′(t, F (t,x))/θ0) and
Y (t,x) = Cp∇(θ0Π)(t, F (t,x)). The Lagrangian form of (3.37) and the
initial conditions is then

∂tF (t,x) = u(t, F (t,x)),

∂tu(t, F (t,x)) + Z(t,x) + Y (t,x) = 0,

F (t,x)#ρ0 = ρ0,

∂tθ(t, F (t,x)) =
1

CpΠ(t, F (t,x))
(Sh + LP ),

∂tq(t, F (t,x)) = Sq − P, (3.39)

u(0,x) = u0(x),

θ(0,x) = θ0(x),

q(0,x) = q0(x),

F (0,x) = x.

As in Section 3.4, the omission of viscosity and thermal conductivity
means that there is no reason why the solutions should be smooth. Air
parcels with different properties can ‘tangle’ as much as desired. We there-
fore again seek weak solutions, where the behaviour of infinitesimally small
fluid volumes is ignored, and work only with integrals. We thus multiply
(3.39) by smooth test functions ϕ and ̟ and seek solutions in the sense
that, for any ϕ ∈ C∞([0, τ ] × Ω : R3), ̟ ∈ C∞([0, τ ] × Ω : R):

∫

Ω×(0,τ)

[

F (t,x) · ∂tϕ(t,x) + u(t, F (t,x)) · ϕ(t,x)
]

dt dx (3.40)

+

∫

Ω
x · ϕ(0,x) dx = 0,
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∫

Ω×(0,τ)

[

u(t, F (t,x)) · ∂tϕ(t,x) + Z(t,x) · ϕ(t,x)

+ Y (t,x) · ϕ(t,x)
]

dt dx +

∫

Ω
u0(x) · ϕ(0,x) dx = 0,

∫

Ω×(0,τ)

[

θ(t, F (t,x))∂t̟(t,x)
1

CpΠ
(Sh + LP )̟(t,x)

]

dt dx

+

∫

Ω
θ0(x)̟(0,x) dx = 0,

∫

Ω×(0,τ)

[

q(t, F (t,x))∂t̟(t,x) − (Sq − P )̟(t,x)
]

dt dx

+

∫

Ω
q0(x)̟(0,x) dx = 0.

The existence of such solutions is an open question. However, a time-
discretized version of (3.37) can be solved by a method based on Brenier
(1991). It is described in Cullen (2002b, Section 3.3). Given data at t = 0,
construct a ‘solution’ at time δt by the following procedure. The forcing
terms are omitted. Define a first guess Lagrangian map F+ by

xc(x) = x +
v0(x)

f
,

yc(x) = y − u0(x)

f
,

F+(δt,x) =

(

xc + (x − xc) cos(fδt) + (y − yc) sin(fδt),

yc + (y − yc) cos(fδt) − (x − xc) sin(fδt),

z + w0(x)δt +
1

2
g

θ′

θ0
δt2

)

, (3.41)

u(δt,x) = u0(x) cos(fδt) + v0(x) sin(fδt),

v(δt,x) = v0(x) cos(fδt) − u0(x) sin(fδt),

w(δt,x) = w0(x) + g
θ′(x)

θ0
δt,

θ′(δt,x) = θ0(x),

q(δt,x) = q0(x).

The forcing terms can easily be included if they can be expressed in terms
of u, θ and q. Otherwise they have to be iterated, and a rigorous treatment
may not be possible.
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We now correct this first guess to enforce the condition that F+#ρ0 = ρ0.
This is done by using the polar factorization theorem of Brenier (1991). This
states that under suitable non-degeneracy conditions, we can uniquely write

F+(δt,x) = F (δt,x) ◦ ∇Υ(x), (3.42)

where F (δt, ·)#ρ0 = ρ0 and Υ is convex. If the term Cp∇(θ0Π) had been in-
cluded in (3.41), and it took constant values on trajectories, F+ would have
been incremented by 1

2δt2Cp∇(θ0Π). We can thus identify the projection

∇Υ defined in (3.42) with the mapping I + 1
2δt2Cp∇(θ0Π). Note that the

presence of the identity map, which can be written as ∇(1
2x

2), will ensure
convexity of Υ as δt → 0, whatever (bounded) value of Π is required for the
projection.

In their proof that the viscous hydrostatic equations could be solved,
Cao and Titi (2005) showed that equations (2.11) could be reduced to the
‘pressure-less’ equations which are solved to define the first guess trajectory
(3.41). In these equations trajectories will usually intersect. They then
used the theory of the three-dimensional Burgers equation to show that
the equations could be solved by including viscosity. In the present case,
we have shown that the pressure gradient term can be used to construct
a trajectory that satisfies the incompressibility condition over a finite time
interval. No viscosity is required. This is consistent with the analyses
in Lions, Temam and Wang (1992b) which show that the non-hydrostatic
equations (3.37) have more regular solutions than equations (2.11) when
viscosity is included in both.

In the present case, it is possible that the equations can be solved without
viscosity. That would require proving the existence of a sufficiently regular
limit as δt → 0. This has not yet been achieved, and existence of solutions
to (3.37) remains open but possible, given that computations have so far
failed to provide convincing evidence that solutions break down in finite
time (Kerr 1993). This issue is discussed at length in Majda and Bertozzi
(2002). If the limit of this solution procedure does not exist, it implies that
trajectories lose their identity and energy dissipation is inevitable.

This solution procedure depends critically on the anelastic approxima-
tion. The projection method is analogous to that used to prove existence
of solutions to the incompressible semi-geostrophic equations by Benamou
and Brenier (1998). The extension of their result to the compressible case
by Cullen and Maroofi (2003) suggests that the solution procedure for the
anelastic equations can be generalized to at least slightly compressible flows.
This would be sufficient for the atmospheric case.

In a grid-based model, the natural discrete representation of this solution
procedure is the semi-Lagrangian method discussed in Section 3.4. The
remapping to grid-points every time-step in this method will inevitable in-
volve loss of identity of the trajectories, so it reasonable to infer that such a
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method will converge as δt → 0, though it is not clear whether convergence
will be to an inviscid energy-conserving solution or to a viscous, dissipa-
tive solution. Domaradzki, Xiao and, Smolarkiewicz (2003) illustrate how a
limiting value of the dissipation can be estimated from numerical solutions.
Nonlinear stability will require enforcing the constraint that transport can-
not create new values of any of the primary variables (u, v, w, θ′, q). This
suggests the use of monotonicity-preserving schemes for all the primary vari-
ables. If this is done, the method will remain stable at a given resolution
irrespective of any energy cascade to smaller scales. Thus the numerical
method incorporates an implicit turbulence model, as discussed by Fureby
and Grinstein (2002), but based on Lagrangian averaging. No other dissi-
pation need be included. In the ECMWF model, monotonicity-preserving
schemes are used for all variables. In the UM they are used for scalars. In
the UM no other dissipation needs to be included in the spatial representa-
tion, except at the poles where the grid is highly distorted. In the ECMWF
model only small amounts of extra dissipation are used. Specialized sub-
grid models are used in regions where there is organized small-scale flow
such as the atmospheric boundary-layer and regions of convective cloud.

The other issue is the discrete version of the projection algorithm (3.42).
This is needed to enforce the continuity equation. In order to maintain
consistency with (3.39), the continuity equation should be written in fully
Lagrangian form as

ρ0(zd)∂(xd, yd, zd)

ρ0(z)∂(x, y, z)
= 1, (3.43)

where xd denotes the departure point associated with arrival point x. Equa-
tion (3.43) is most naturally calculated with all components of u held to-
gether at the vertices of grid volumes, giving a three-dimensional version of
the B-grid shown in Figure 3.4. This leads to a 27-point stencil for the Pois-
son equation for Π which will be difficult to invert. This problem does not
arise if the conservative scheme is written as a product of one-dimensional
schemes, as in Lin and Rood (1997) or Zerroukat et al. (2004). If an Eule-
rian form of the constraint is used, it takes the form of a discretization of
the equation ∇ · (ρ0u) = 0 from (3.37). This is naturally expressed on the
C-grid shown in Figure 3.4, with Π calculated by solving a discrete Poisson
equation on a 7-point stencil. This satisfies a discrete maximum principle,
as noted in Section 3.3, and is the basis of the scheme used in the UM
(Davies et al. 2005).

3.7. Summary

In this section, we have demonstrated how numerical methods can be cho-
sen optimally for different asymptotic regimes. The examples used were pri-
marily nonlinear regimes, so emphasis is placed on maintaining Lagrangian
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conservation properties by using spatial discretizations that preserve mono-
tonicity. Since in most cases the asymptotic limit solutions are derived by
solving equations with time derivatives removed, the use of selective time
filtering is an important method of staying close to the asymptotic solutions.
Where the limit equations are derived by removing Lagrangian time deriva-
tives, as in Section 3.4, the time filtering needs to act in a Lagrangian sense.

The regimes surveyed here are not comprehensive. In some cases the
behaviour is well described by linear dynamics. These cases have been ex-
tensively analysed in the literature (Arakawa and Lamb 1977, Durran 1998).
The use of monotonicity-preserving advection schemes is not optimal when
the dynamics is nearly linear and the data smooth. Long-term accuracy is
then better preserved by methods such as spectral methods, which have no
computational damping. This is another example of the dependence of the
choice of optimal numerical methods on the regime being modelled.

4. Examples using the Met Office model

4.1. The numerical scheme in the Unified Model

The issues described in Section 3 are illustrated using various simplified
configurations of the Met Office Unified Model (UM) described by Davies
et al. (2005). We summarize the equations and discretization in this section.

The equations used are the compressible Euler equations (2.1). The
momentum equation is solved in the form (2.8) and the thermodynamic
equation in the form (2.5). Sub-grid modelling terms, represented as Su,
which include turbulent diffusion are added to the horizontal momentum
equations. The equations are formulated in the spherical polar coordinates
(λ, φ, r) introduced in Section 2.1, with a lower boundary condition u = 0
and ∂u/∂r at r = r0(λ, φ) and an upper boundary condition w = 0 at
r = rT . This assumes that the terms Su contain higher-order terms near
the surface consistent with a no-slip lower boundary condition, but that Su

does not contain second-order vertical derivatives near r = rT . For con-
venience in applying the lower boundary condition, the radial coordinate r
is replaced by a terrain-following vertical coordinate η, such that η = 0 at
r = r0 and η = 1 at r = rT . The transformation from r to η is described by
Davies et al. (2005). All variables in the equations, including r and w, are
then considered as functions of (λ, φ, η). The terms which account for the ef-
fects of moisture are not considered in these tests and are thus omitted. For
convenience, the resulting equations are summarized in component form:

D

Dt
≡ ∂

∂t
+

u

r cos φ

∂

∂λ
+

v

r

∂

∂φ
+ η̇

∂

∂η
,

η̇
∂r

∂η
= w − u

r cos φ

∂r

∂λ
− v

r

∂r

∂φ
,
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Du

Dt
− uv tanφ

r
+

uw

r
− 2Ω sinφv + 2Ωcos φw

+
Cpθ

r cos φ

(

∂Π

∂λ
− ∂Π

∂η

(

∂r

∂η

)−1 ∂r

∂λ

)

= Su,

Dv

Dt
+

u2 tanφ

r
+

vw

r
+ 2Ω sin φu + 2Ω sin φw

+
Cpθ

r

(

∂Π

∂φ
− ∂Π

∂η

(

∂r

∂η

)−1 ∂r

∂φ

)

= Sv,

Dw

Dt
− (u2 + v2)

r
+ 2Ωcos φu + Cpθ

∂Π

∂η

(

∂r

∂η

)−1

+ g = Sw,

∂

∂t

(

r2ρ
∂r

∂η

)

+ ∇ ·
(

r2ρ
∂r

∂η
(u, v, η̇)

)

= 0,

(4.1)

Dθ

Dt
= Sh,

Π = (p/pref)
−R/Cp ,

p = ρRθΠ.

The discretization of the equations is described by Davies et al. (2005).
The variables are held on the C-grid defined in Figure 3.4 in the horizontal
and the Charney–Phillips grid in the vertical, with θ held at w-points and ρ
at pressure points. It is shown in Thuburn (2006) that, given the form of the
pressure gradient terms used in (4.1), this results in an optimal discretization
of (4.1) in the vertical. The equations are solved by a semi-implicit scheme
in which the factor ∇Π in the pressure gradient terms and the components
of the Coriolis term proportional to sinφ are integrated implicitly. The
advection terms, including the metric terms that arise in spherical polar
coordinates, are integrated explicitly by a vector semi-Lagrangian method
based on that of Bates, Moorthi and Higgins (1993).

This scheme encompasses many of the features noted in Section 3 as desir-
able for accurate representation of important asymptotic limits. Research is
being carried out into implicit calculation of the semi-Lagrangian departure
points, as illustrated in Section 3.4, and into conservative semi-Lagrangian
schemes, as discussed in Sections 3.4 and 3.6.

4.2. Validation for shallow water flow

The first set of tests is to demonstrate that the correct behaviour is obtained
for shallow water flow. If the differences between the solutions of the exact
equations and the asymptotic limit equations agree with the theoretical
predictions, it is a validation of the experimental procedure, the numerical
methods, and the correctness of the coding.
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The tests are carried out on a sphere of radius a, to avoid boundary issues,
but with the rotation terms replaced by a constant value 2Ω. This is to
ensure that the Rossby radius is uniform over the domain. This formulation
was used by Cullen (2002a). The water depth is written as h and the velocity
as u = (u, v). The shallow water version of equations (4.1) is then

D

Dt
≡ ∂

∂t
+

u

a cos φ

∂

∂λ
+

v

a

∂

∂φ
,

Du

Dt
− uv tanφ

a
− 2Ωv +

g

a cos φ

∂h

∂λ
= 0,

Dv

Dt
+

u2 tanφ

a
+ 2Ωu +

g

a

∂h

∂φ
= 0,

∂h

∂t
+ ∇ · (hu) = 0.

(4.2)

The tests are carried out with a shallow water version of the UM code,
described in Mawson (1996), and the shallow water semi-geostrophic model
of Mawson (1996). The semi-geostrophic approximation to (4.2) replaces
the momentum (u, v) by (ug, vg), where

2Ωug = −g

a

∂h

∂φ
, 2Ωvg =

g

a cos φ

∂h

∂λ
. (4.3)

The equations can be rewritten in an analogous way to (3.25), with a matrix
Q given by

Q =

(

4Ω2 + 2Ω
a cos φ

∂vg

∂λ +
2Ωug tan φ

a
2Ω
a

∂vg

∂φ

− 2Ω
a cos φ

∂ug

∂λ +
2Ωvg tan φ

a 4Ω2 − 2Ω
a

∂ug

∂φ

)

. (4.4)

We also use an incompressible version of the UM code, in which the final
equation of (4.2) is replaced by

∇ · u = 0. (4.5)

The experiments shown here were designed to test the effect of varying
Ro/Fr for fixed Ro. Since the Froude number for shallow water flow is
U/

√
gH and so Ro/Fr is proportional to

√
gH for a fixed length-scale, this

was achieved by using the same perturbation depth field for all runs, but
varying the mean value h0 from 12800 m down to 400 m. The perturbation
depth field is the same as that used in Cullen (2002a). It includes compo-
nents on zonal wave-numbers ranging from 3 to 20, with amplitudes such
that the total depth h is always positive and the matrix Q, (4.4), calculated
from h using the geostrophic relations is positive definite. The resulting
depth field is shown in Figure 4.1. The amplitude of the variations is about
±340 m. The horizontal velocity had a maximum value of about 16 m s−1.
The gravity wave speed varied from 360 m s−1 to 65m s−1. The results
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Figure 4.1. Initial depth data gh, units m2 s−2 for
shallow water experiments. Contour interval 50 m2 s−2.

quoted by Reiser (2000, p. 65) suggest a gravity wave speed of 140 m s−1

as giving the best match of shallow water solutions to the evolution of the
barotropic part of the atmospheric flow (i.e., that part whose direction is
independent of height). The average Rossby number was thus about 0.1,
and the average Froude number ranged from 0.05 to 0.3. The Rossby radius
LR ranged from 3600 km (about wave-number 2) to 650 km (about wave-
number 11). Thus for the largest value of LR nearly all the variance was on
scales less than LR, and for the smallest value much of the variance was on
scales larger than LR. As discussed in Section 3.4, it is therefore expected
that the semi-geostrophic model should be accurate for the small values of
mean depth, but deteriorate significantly for larger values. The reverse is
expected to happen for the incompressible model.

The data are initialized for the semi-geostrophic model using the proce-
dure described by Mawson (1996). This calculates an initial u and v con-
sistent with the given h and the semi-geostrophic approximation to (4.2).
These data are passed to the shallow water model. The vorticity calculated
from u and v using (3.1) is used to initialize the incompressible equations.
While the incompressible solution itself is insensitive to the mean depth,
the initialization procedure means that the initial vorticity is different in
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Figure 4.2. Left : Root-mean-square depth differences (m)
between semi-geostrophic model and shallow water model with
best linear fit shown. Right : Root-mean-square depth differences
between incompressible model and shallow water model with best
fit by a quadratic function. Both calculated after 48 hours and
plotted against gravity-wave speed (m s−1).

experiments with different mean depths. The results were found to be very
sensitive to the initialization procedure.

The resolution for the experiments was a latitude–longitude grid with 288
points around latitude circles and 193 points between the poles. The models
are run for two days. As shown in Cullen (2002a), this is sufficiently short for
the vorticity distribution to remain well resolved in the case of large mean
depth. The results are compared in terms of r.m.s. errors of the primary
prognostic fields, thus using the trajectory u, v from the semi-geostrophic
model rather than the geostrophic winds.

The results for the depth errors plotted against gravity-wave speed are
shown in Figure 4.2. The gravity wave speed is proportional to Fr−1.
The wind errors are shown in Figure 4.3. According to Cullen (2000),
the expected error for the semi-geostrophic depth field is the greater of
O(Ro(Ro/Fr)2) and O(Ro2) for small Ro and Ro < Fr. The error is O(Ro)
for small Ro with Ro ≥ Fr and O(Fr) for small Fr. The expected error for



Modelling atmospheric flows 123

Figure 4.3. As Figure 4.2 for root-mean-square wind errors (m s−1).

the incompressible model is O(Fr2). In the present experiment, Ro/Fr is
O(1), but the smallest Fr is 0.05.

Figure 4.2 shows a linear decrease of the depth error in the semi-geo-
strophic model as Fr increases. This is in the expected direction, but there
is no quadratic convergence, unlike that shown by Cullen (2000). This
reflects the fact that Ro/Fr =O(1) in these experiments; the smaller values
used in Cullen (2000) could not be reached using these data. The error in
the incompressible model exhibits the expected quadratic behaviour, but
it does not asymptote to zero. The errors in the incompressible model are
much larger than those in the semi-geostrophic model. Iterated calculations
allowing non-zero divergence, as described in Section 3.5, would have much
smaller errors.

Figure 4.3 shows that the trajectory errors in the semi-geostrophic model
are essentially independent of Fr. They are very small, about 0.1 m s−1. The
errors in the incompressible model are quadratic in Fr, and asymptote to
about 0.2 m s−1. These residual errors may result from initialization differ-
ences or numerical errors. To put this in perspective, if the shallow water
and incompressible models were started with zero divergence, and vortic-
ity calculated from geostrophic velocities derived from the semi-geostrophic
model, the errors after 48 hours were of the order of 3 m s−1.
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These results show that the numerical models are behaving in the ex-
pected way. We now supplement this by illustrating how schemes that are
not constructed according to the principles set out in Section 3 may not give
the correct asymptotic behaviour. We thus analyse discrete approximations
to a linearized version of (4.2) in plane geometry, which allows the effect
of different discretizations to be demonstrated. It is necessary to consider
forced equations so that we can demonstrate convergence to the asymptotic
limit for prescribed forcing. The equations are linearized about a state of
rest with h = h0. The equations solved are thus

∂u

∂t
− 2Ωv + g

∂h

∂x
= Au,

∂v

∂t
+ 2Ωu + g

∂h

∂y
= Av, (4.6)

∂h

∂t
+ h0∇ · u = Ah.

We assume a domain (−πL, πL)×(−πL, πL) ⊂ R
2 and periodic boundary

conditions. Assume forcing and thus solutions proportional to ei(kx+ly−νt).
The inertia-gravity wave frequency ω is then

√

gh0(k2 + l2) + 4Ω2. We
assume that the forcing is non-resonant, so that ν �= ω for any choice of k and
l that is an integer multiple of L−1. The Froude number Fr is now the ratio
of the forcing frequency ν to the gravity wave frequency

√

gh0(k2 + l2). The
limit equations as Fr → 0 are given by replacing the third equation of (4.6)
by (4.5), noting that taking this limit for fixed forcing requires Ah/h0 → 0.
We then eliminate h to obtain

∂ζ

∂t
=

∂Av

∂x
− ∂Au

∂y
,

ζ =
∂v

∂x
− ∂u

∂y
, (4.7)

∇ · u = 0.

Write the solution of (4.6) as (û, v̂, ĥ) expi(kx+ly−νt) and the forcing as

(Âu, Âv, Âh) expi(kx+ly−νt). Consider, for example, the case where Âv =

Âh = 0. Then we can show that





û
v̂

ĥ



 =
i

ν
(

ν2

gh0
− (k2 + l2) − 4Ω2

gh0

)









ν2

gh0
− l2

−2iΩν
gh0

− kl
1
g (−2iΩl + kν)









Âu. (4.8)

The limit solution for small Fr, using (4.7) and inferring ĥ by back sub-
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stitution, is given by




û
v̂

ĥ



 =
i

−ν(k2 + l2)





−l2

−kl
1
g (−2iΩl + kν)



. (4.9)

Since Fr2 ∝ 1/(gh0), we can see from (4.8) and (4.9) that the solution of
(4.6) converges to the limit solution at a rate O(Fr2). The accuracy of the
limit solution increases as k and l increase, consistent with the dependence
on Ro/Fr demonstrated above.

Now consider a discretization of (4.6) using the C-grid and implicit time
integration as used in the UM. This can be written using the notation
introduced in Section 3.2 as

δtu − 2Ωvt + gδxh
t
= A

t
u,

δtv + 2Ωut + gδyh
t
= A

t
v, (4.10)

δth + h0(δxut + δyv
t) = A

t
h.

Assuming grid-lengths δx, δy, write

k̃ = 2 sin(1
2kδx)/δx, l̃ = 2 sin(1

2 lδy)/δy.

Write ν̃ = 2 tan(1
2νδt) and write Ãu for the spatially discretized version of

the forcing term Au, with similar notation for the other forcing terms. Then
the discrete version of (4.8) becomes





û
v̂

ĥ



 =
i

ν̃
(

ν̃2

gh0
− (k̃2 + l̃2) − 4Ω2

gh0

)









ν̃2

gh0
− l̃2

−2iΩν̃
gh0

− k̃l̃
1
g (−2iΩl̃ + k̃ν̃)









Ãu (4.11)

and (4.9) becomes




û
v̂

ĥ



 =
i

−ν̃(k̃2 + l̃2)





−l̃2

−k̃l̃
1
g (−2Ωl̃ + k̃ν̃)



 Ãu. (4.12)

Since kδx, lδy, νδt are all less than or equal to π for any resolved function,
k̃, l̃ and ν̃ are all non-zero. Therefore convergence of (4.11) to (4.12) will
occur at the predicted rate O(Fr2).

If the spatial discretization is instead performed on the B-grid defined in
Figure 3.3, then

k̃ = 2 sin(1
2kδx) cos(1

2 lδy)/δx, l̃ = 2 sin(1
2 lδy) cos(1

2kδx)/δy.

These are both smaller than their values on the C-grid, so the accuracy of
the approximation to the limit solution will be degraded. k̃ and l̃ are both
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zero if kδx = lδy = π. In this case, (4.11) reduces to





û
v̂

ĥ



 =
i

ν̃
(

ν̃2

gh0
− 4Ω2

gh0

)







ν̃2

gh0

−2iΩν̃
gh0

0






Ãu =

i

(ν̃2 − 4Ω2)





ν̃
−2iΩ

0



 Ãu. (4.13)

This represents a forced inertial oscillation. This cannot be a solution of
(4.7) because the latter equation has no dependence on Ω. The B-grid
analogue of (4.7) becomes completely degenerate in this case and is satisfied
by any (û, v̂), leading to accumulation of noise and possible computational
instability. We thus see that an inappropriate choice of discretization can
lead to the limiting behaviour of the solution being incorrect. Note that
in the analytic case, the manipulations leading to (4.7) do not make sense
if k = l = 0 and so in this case (4.7) is not the correct limit of (4.6)
as Fr → 0. The B-grid discretization creates this situation unphysically
because of numerical errors.

4.3. Validation for baroclinic waves and fronts

The tests described in this subsection use the Eady model of frontogenesis
(Gill 1982, p. 556) and the Boussinesq incompressible forms of (4.14) and
(4.15). This allows the fundamental mechanism by which extra-tropical
weather systems evolve to be studied in two-dimensional vertical slice ge-
ometry. Thus all variables are assumed to be independent of one horizontal
direction except for basic state variations in pressure and potential temper-
ature which are in hydrostatic balance. We use Cartesian coordinates (x, y)
in the horizontal. Since we will use the same model for tests of flow over
ridges, we retain the terrain-following coordinate from (4.1). Write

Π = Π1(y, η) + Π(x, η), θ = θ1(y) + θ(x, η),

with Cpθ1(∂Π1/∂η)(∂z/∂η)−1 + g = 0. Equations (4.1) then reduce to
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p = ρRθΠ.

The use of vertical slice geometry means that the semi-geostrophic model
is the natural approximation when rotation is important. This is because all
quantities are assumed independent of y, and the frontal scaling introduced
by Hoskins (1975) is appropriate. The semi-geostrophic approximation to
equations (4.14) is
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Π = (p/pref)
−R/Cp ,

p = ρRθΠ.

The first of these equations states that v is geostrophic, showing that
these equations are consistent with (3.23) under the assumption of no y-
dependence. As with the derivation of (3.26), these equations can be solved
by reducing them to a single elliptic equation for ∂Π/∂t. The method is
described in detail in Cullen (2007). However, it is not clear if this form of
the equations has well-posed solutions.

Cullen and Maroofi (2003) showed that these equations are well-posed
if written in geostrophic and isentropic coordinates and then solved as a
transport equation for the mass density. The coordinates are defined by

X = x + f−1v, Z = θ. (4.16)

The second and fifth of equations (4.15) then become
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(4.17)
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The UM equations (4.14) are solved by the methods described in Sec-
tion 4.1. Thus u is staggered in the horizontal from Π, but, because of the
slice geometry, v is held at the same points as Π. The algorithm for solving
(4.15) uses the same vertical arrangement of variables. However, in order
to represent geostrophic balance, v is staggered in the horizontal from Π.
The matrix Q, defined as in (3.25), which appears in the elliptic equation
(3.26) for ∂Π/∂t, is evaluated at pressure points. This means that the fi-
nite differences on the diagonal are calculated over a single grid-length, but
the off-diagonal terms involve additional averaging. This has the desirable
property of increasing the diagonal dominance of the system. The reduction
of the problem to a single equation for Π is needed in order to ensure that v
and θ represent an exactly geostrophic and hydrostatic state. As discussed
in Section 3.4, physically relevant solutions of SG are characterized by the
matrix Q being positive definite. This condition is also required for (3.26)
to be solvable. This condition is not naturally enforced by the numerical
method. It is therefore necessary to correct the data at the end of each time-
step so that Q is positive definite. This is done by a variational method
described in Cullen (2007).

Previous work on this problem by Cullen and Roulstone (1993) used a
geometric algorithm to solve the Boussinesq incompressible form of (4.15)
and showed that the solutions represent a sequence of energy-conserving
life-cycles in which disturbances develop and decay. The solutions are dis-
continuous when the disturbances are fully developed and are shown to
be predictable for many life-cycles. These results were confirmed by a
more efficient geometric algorithm due to R. J. Purser; see Cullen (2006,
Section 5.3.2).

We illustrate the main points of the solutions obtained using the geometric
algorithm. The equations are solved on a domain Γ : [−L, L]× [0, H] in the
(x, z) plane with periodic boundary conditions in x and rigid wall conditions
w = 0 on z = 0, H. The initial data are represented on a set of fluid
elements, on each of which X and Z as defined in (4.16) are constant. Two
resolutions are used, of 21 × 13 and 40 × 26 elements. Solutions of the
Boussinesq incompressible form of (4.15) for initial data of the form

θ′ = N2
0 θ0z/g + B sin

(

π(x/L + z/H)
)

, (4.18)

where N2
0 and B are positive constants, are illustrated. The data used are

taken from Nakamura (1994), so that

L = 1000 km, H = 10 km, N2
0 = 2.5 × 10−5 s−2, f = 10−4 s−1,

g = 10m s−1, θ0 = 300 K, ∂θ1/∂y = 3 × 10−6 m−1 K.

These data correspond to an unstable mode of the linearized equations de-
rived from (4.15). As discussed in Gill (1982, p. 556), if the isentropes have
a negative slope dx/dz, then vg will increase with z, and the evolution
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Figure 4.4. Top: Plot of potential temperature after 8 days
(degrees K, contour interval 10 K). Middle: Plot of potential
vorticity scaled by f2N2

0 after 8 days (contour interval 20).
Bottom: Plot of potential temperature after 15 days
(degrees K, contour interval 10 K). From Cullen (2006).
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equation for θ′ will increase the vertical gradient of θ, giving a positive feed-
back. It represents conversion of potential energy from the infinite reservoir
implied by the imposed basic state ∂θ1/∂y into kinetic energy.

We show the solutions after 8 days in Figure 4.4, at which point there is
strong frontogenesis, as illustrated by the potential temperature plot. The
potential vorticity at the same time is also shown. There is a large increase
in the value in the frontal zone. The semi-geostrophic potential vorticity is
defined as the determinant of the matrix Q defined in (3.25). As discussed
in Cullen (2006, Chapter 3), it represents the Jacobian of the transformation
between physical coordinates and the coordinates (X, Z) defined in (4.16).
During the time evolution, the area occupied by the fluid is conserved in
both (x, z) and (X, Z) coordinates. However, the shape of the region oc-
cupied by the fluid in (X, Z) space becomes highly distorted, as illustrated
schematically in Figure 4.5. The total potential vorticity calculated in (x, z)
space would be the ratio of the area of the convex hull of Σ to the area of
Γ. This ratio will not be conserved during the time evolution.

The potential vorticity is initially equal to the uniform value f2N2
0 . At the

front it becomes a Dirac mass, which is represented in Figure 4.4 as large
values by the plotting software. The irregularities are due to the use of
piecewise constant data and thus the irregularity of the boundaries between
elements. The small negative values are artifacts of the plotting.

The formation of the fronts at the upper and lower boundaries destroys
the normal mode property of the initial data, and the vertical shear in the
basic state reverses the slope of the isentropes by day 10. The front is then
destroyed. The mean potential vorticity remains larger than its initial value,
represented by layers of enhanced static stability near the upper and lower
boundaries as shown in Figure 4.4. Further life-cycles then take place, with

Figure 4.5. Mapping a region in (X,Z) space (Σ) to a rectangular
region in (x, z) (Γ). The points A, B and C indicate corresponding
points in Γ and Σ. From Cullen (2006).
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the disturbances confined to the region of uniform static stability in the
centre of the domain.

A graph of the kinetic energy against time is shown in Figure 4.6. This
shows that after 8 days the maximum kinetic energy is reached. It then
reduces, and smaller amplitude life-cycles follow. The periodic oscillations
continue to day 30. The graphs for the two resolutions are almost identical,
showing that the solution is highly predictable, despite the formation of
fronts. The Boussinesq incompressible form of (4.15) has a natural period
equal to 2Lfθ1(gH∂θ1/∂y), the length of time between when features at
the upper and lower boundaries come back into phase under the action of
the basic state wind. With the data chosen, the difference in the basic
state wind between the boundaries is 10 m s−1, giving a period of about 2.3
days. This is much shorter than the period observed, reflecting the fact
that the vertical shear is impeded during the growth phase. It also shows
that the prediction of the same period by two different discretizations is a
non-trivial achievement.

Solutions using conventional numerical methods have been obtained by
Nakamura and Held (1989) and Nakamura (1994). They lose predictability
after a single life-cycle. Nakamura and Held (1989), using solutions of the
Boussinesq incompressible form of (4.14), show that the loss in predictabil-
ity is associated with the need to include a form of artificial viscosity in
order to capture the frontogenesis. The solution after the first life-cycle

Figure 4.6. Graph of domain-averaged meridional kinetic
energy m2 s−2 against time for the solution of the Boussinesq
incompressible form of (4.15) by the geometric method.
Solid line = 40 × 26 elements, dashed line = 21 × 13 elements.
From Cullen (2006).
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is strongly dependent on the form of artificial viscosity used. Nakamura
(1994) describes solutions of the Boussinesq incompressible form of (4.15)
using Eulerian numerical methods based on potential vorticity, and using
artificial viscosity to capture the front. There is a large increase in potential
vorticity generated by the artificial viscosity, which again results in layers
of enhanced static stability near the boundaries.

In this section we illustrate solutions obtained using the UM discretization
scheme and a solution of the semi-geostrophic equations in real variables,
based on (4.15). These are compared qualitatively with the solutions of the
Boussinesq incompressible equations discussed above, but the additional
approximations mean that quantitative comparisons are not appropriate.
The integration domain is the same as that used above, with the same flow
parameters. In order to ensure that the initial potential vorticity, as defined
by (2.6), is uniform, N2

0 is set to 2.5 × 10−5ρ0(0)/ρ1(z), where ρ1(z) is an
initial reference profile in hydrostatic balance calculated for an isentropic
state using (2.8). The basic state ∂Π1/∂y is chosen to vary linearly in z, so
that the initial u in geostrophic balance with it varies from −5 to 5m s−1

over the depth of the domain, as in the Boussinesq incompressible case. The
basic state ∂θ1/∂y is calculated from ∂Π1/∂y using the hydrostatic relation.

The mean meridional kinetic energy from the two integrations is illus-
trated in Figure 4.7. The mean potential vorticity, scaled by its initial
value, is shown in Figure 4.8. The semi-geostrophic integration produces an
earlier growth of the initial disturbance. The UM integration gives an ini-
tial growth on the same time-scale as the results of Nakamura (1994). After
the initial growth, the semi-geostrophic integration reduces the meridional
kinetic energy to very small values while the UM retains a value close to
the maximum reached. Both integrations show a large increase in potential
vorticity as the disturbance grows, and retain high values for the rest of the
integration. Further life-cycles occur in the UM integration, but with much
smaller amplitude than those given by the geometric model and even those
shown by Nakamura (1994).

Further study of the results (diagrams not shown) shows that, after the
initial growth, both solutions are dominated by a wave in the v-field which
is almost independent of height and a geostrophically balanced pressure.
The potential temperature signal is rather weak. In the UM, the wave then
propagates slowly through the domain. It is completely different from the
solutions shown in Nakamura (1994). However, the compressible formula-
tion of the UM means that it has solutions not available to the models of
Nakamura (1994). After the initial life-cycle, the semi-geostrophic solution
becomes almost independent of height, and the amplitude of the wave in the
v-field then slowly decays. The increased potential vorticity is represented
by layers of enhanced static stability at both boundaries. The latter fea-
ture can also be seen in the geometric model solutions shown in Figure 4.4.
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Figure 4.7. Graph of domain-averaged meridional kinetic
energy m2 s−2 against time. Solid line = solution of
(4.15), dashed line = solution of (4.14).



134 M. J. P. Cullen

Figure 4.8. Graph of domain-averaged potential vorticity,
scaled by its initial value, against time. Solid line =
solution of (4.15), dashed line = solution of (4.14).



Modelling atmospheric flows 135

The symmetry of the solution in the vertical shown from the geometric
model is lost because of the large basic-state density variation.

These results suggest that neither model is able to capture the qualitative
behaviour shown in the geometric model. The reason is that the state left
after the initial life-cycle is strongly dependent on the numerical algorithm.
The geometric method is fully Lagrangian, and thus much more naturally
suited to the problem. Fully Lagrangian methods have not yet been con-
sidered as practical for production models, though the contour advection
method of Mohebalhojeh and Dritschel (2004) has been successful in ideal-
ized problems. The normal formulation of this method would be unsuitable
in the present case because of the lack of potential vorticity conservation
integrated over the physical domain. It would be necessary to apply the
method in geostrophic and isentropic coordinates, which is only practicable
even in principle for a semi-geostrophic model.

4.4. Validation for large-scale flow over a ridge

In this section we demonstrate in vertical-slice geometry that solutions of
the UM equations (4.14) converge to the solutions of the semi-geostrophic
(SG) equations (4.15) at the expected rate in the presence of orography.
These experiments are described in more detail in Cullen (2007), where the
tests are carried out in a wider range of cases.

The UM equations (4.14) and SG equations (4.15) are solved as described
in Section 4.3. The forcing pressure gradient ∂Π0/∂y is chosen to be uniform
in z. The initial horizontal pressure gradient is set to zero. Because of the
orography, the values of Π have to be calculated so that

∂Π

∂x
− ∂Π

∂η

(

∂z

∂η

)−1 ∂z

∂x
= 0 (4.19)

in a discrete sense. This can only be achieved if ∂2Π/∂z2 is uniform, because
otherwise the finite difference expressions for the terms in (4.19) do not can-
cel up to rounding error. We therefore use initial and boundary pressure
data satisfying this condition, and modify the finite differencing in Davies
et al. (2005) to extrapolate θ to the lower boundary assuming hydrostatic
balance and constant ∂2Π/∂z2. In the SG model, the matrix Q defined in
(3.25) is calculated in (x, z) coordinates rather than (x, η) coordinates, and
the positive-definiteness condition is enforced in these coordinates. The ma-
trix is then transformed to (x, η) coordinates as described in Cullen (2007).

Assume a length-scale l, which will be the half-width of the ridge, and a
geostrophic velocity ug in the x-direction. The Froude number Fr is defined
as ug/(Nh), where N is the Brunt–Väisälä frequency and h is the ridge
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height. The Rossby number Ro is defined as ug/fl. The Rossby radius
LR = NH/f . The error estimates for SG theory were given in Section 4.2.
We test the limit Ro → 0 for fixed LR by letting ug → 0 and leaving all
other parameters fixed. In Cullen (2007) the limit Ro → 0 with Ro =O(Fr2)
was also tested.

We choose a domain of length 2000 km and height 10 km. The ridge is
centred at x =750 km, and has width 150 km and height 2400 m. The ridge
profile is an isolated cosine-squared hill. The Brunt–Väisälä frequency is
0.01 and the Coriolis parameter 10−4. The ridge is thus slightly narrower
than the radius of deformation. Since ug is determined from ∂Π0/∂y, which
is height-independent, ug increases slowly with z because of the increase of
θ. Values of ug at z = 0 are chosen to range from 0.625 m s−1 to 10m s−1,
giving Ro ranging from 0.083 to 1.33.

The integrations start from very simple initial data with uniform u and
zero w. A rapid initial adjustment will take place to create an approximately
non-divergent flow. A further adjustment will take place on the inertial
time-scale to establish approximate geostrophic balance of the wind parallel
to the ridge. The experiments are therefore run for several inertial periods
to allow this to happen. The solutions that are verified will be close to
steady-state. Since it is unlikely that either model actually gives steady-
state solutions to this problem, there will be a sampling issue in the error
calculations. Results are therefore shown for two times, corresponding to
1.875 and 2.5 days for ug = 10m s−1. Two spatial resolutions are also shown
for the UM integrations, of 121 × 61 and 201 × 121 points respectively.
The SG solutions are only shown for 121 × 61 resolution, since they have
essentially converged by this point.

We note that the SG solution is independent of ug in the sense that the
pressure, and fields derived directly from it, only depend on ugT where T is
the period of integration. The velocities u, η̇ and w will be proportional to
ug. Thus, in order to compare results with different values of ug, we choose
a total integration time inversely proportional to ug. This means that the
same SG states can be used for comparison of UM runs with all values of ug.

The limit solution for ug = 0 has the same p, vg and θ as the solution for
finite ug, and has u = η̇ = 0. Since this represents an exactly geostrophic
and hydrostatic state, it is also a solution of the UM equations. Convergence
should therefore be possible. The limit solution depends on the history of
the problem. If the limit ug → 0 is taken with negative values of ug, the SG
solution will be reflected in x = 0, and thus be different.

The main characteristics of the solution are discussed in Cullen (2006,
Chapter 6) and Shutts (1998). Some of these can be seen from the cross-
section of v from the UM shown in Figure 4.9. A particular feature is the
blocking of cold air near the surface on the upstream side of the ridge and
the associated barrier jet. The effect is to extend the influence of the ridge



Modelling atmospheric flows 137

Figure 4.9. UM solution for v at 40 days (solid), with
Ro = 0.083 and 201 × 121 grid, plotted against
height (m) and horizontal grid-point number. Units
m s−1, contour interval 1.25 m s−1. From Cullen (2007).

upstream for a horizontal distance LR. The solution has a pressure force
acting on the ridge, which represents the orographic drag. Air trapped on
the upstream side of the ridge will have v increasing with time, as u is
constrained to be zero. Therefore the slopes of the isentropes, which are
related to ∂v/∂z, will increase with time and trapped air will reach the top
of the ridge with a large v. At this point, there will be a large negative value
of f +∂v/∂x, so that the air parcel will be unstable and ‘jump’ downstream
to a stable position. In reality, there would be a rapid down-slope wind not
described by semi-geostrophic theory. In the UM solutions, we therefore
expect to see a region of inertial instability downstream of the mountain,
together with a downslope wind. The overturning associated with inertial
instability is clearly seen in Figure 4.9. This would be expected to relax
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to a stable state as given by the SG model, but the relaxation could take
many inertial periods. In the real three-dimensional system the relaxation
is likely to be faster as three-dimensional turbulence will be generated in
the inertially unstable region.

Figure 4.10 shows the r.m.s. differences in v. These exhibit the expected
linear convergence, with little difference between the two UM resolutions.
However, the best fit lines do not actually go to zero. This is likely to
reflect the failure of the UM to relax to a symmetrically stable state at
very small Ro as discussed above. It is also shown in Cullen (2007) that
the need to enforce positive-definiteness of Q in the SG model means that
the maximum of the barrier jet occurs below the top of the ridge. This is
because the variational adjustment which is used to enforce this condition
does not know about the flow direction, and therefore makes adjustments
both upstream and downstream of the ridge. In the UM, the barrier jet
does reach the top of the ridge, as shown in Figure 4.9. This contributes to
the error for small Ro.

Figure 4.11 shows the convergence of the drag. Again the expected linear
convergence is achieved, with little sensitivity to UM resolution. There is
less of an issue at small Ro than with the v-field. This is because the drag
measures the total amount of flow blocking, which is determined by large-
scale aspects of the problem. It is insensitive to the details of how the energy
is dissipated downstream of the ridge.

Figure 4.12 shows the convergence in θ. This is less satisfactory, though
the error does reduce with Ro. The convergence is better using the higher
resolution UM data, suggesting that numerical errors may be significant.
Difference fields (not shown) indicate that the errors are mainly upstream
of the ridge, where the SG model has greater flow blocking, and in the
inertially unstable region downstream. These are related to the same issues
as those discussed in the context of the errors in v.

The test of the limit Ro → 0 with Ro =O(Fr2) in Cullen (2007) shows
a similar story. The expected higher-order rate of convergence is obtained,
but the errors do not asymptote to zero. The error in the θ field is the
most sensitive to numerical errors. In this limit, the SG solution becomes
smooth, so issues with the removal of inertial instability are not relevant.
The residuals thus probably represent accumulated computational errors.

Overall, this problem suggests reasonable agreement with theory. The
residual errors are related to the technical difficulty of maintaining inertial
stability in the SG model, and the issue of how fast and on what scales the
UM should relax to an inertially stable solution. There are also issues in
converting an accurate solution of the evolution problem into an accurate
solution of the steady-state problem. Tests of accuracy in the initial evo-
lution would be of little practical relevance because of the large transient
motions set up by the initial conditions chosen.
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Figure 4.10. Convergence of r.m.s. differences of v (m s−1)
between UM and SG solutions for fixed LR, plotted against
Rossby number. SG solutions on 121 × 61 grid. Thin line =
best linear fit in Ro to differences between UM solutions on
121 × 61 grid and SG solutions. Individual differences
plotted as + symbols, using two verification times for each
Ro. Thick line = best linear fit in Ro to differences
between UM solutions on 201 × 121 grid and SG solutions.
Individual differences plotted as asterisks, using two
verification times for each Ro. From Cullen (2007).
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Figure 4.11. Convergence of drag on the ridge between
UM and SG solutions for fixed LR, plotted against Rossby
number. The drag is measured per unit length in the
y-direction, units are 105 Pa m−1. SG values are plotted as
triangles at Ro = 0. Thin line = best linear fit in Ro to
UM solutions on 121 × 61 grid. Thick line = best linear fit
in Ro to UM solutions on 201 × 121 grid. Individual
differences plotted as + signs (low resolution) and asterisks
(high resolution), using two verification times for each Ro.
From Cullen (2007).
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Figure 4.12. Convergence of r.m.s. differences of θ (deg K)
between UM and SG solutions for fixed LR, plotted against
Rossby number. Resolutions and plotting conventions as in
Figure 4.10. From Cullen (2007).
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4.5. Validation for small-scale flow over a ridge

In this subsection we compare UM solutions for the flow over a ridge problem
treated in Section 4.4 with solutions of an anelastic version of the UM. The
aim is to demonstrate convergence of the UM to an anelastic solution at
the predicted rate. The UM equations for this problem are again (4.14).
The anelastic version is obtained by first defining initial data satisfying the
hydrostatic equation and equation of state:

Cpθ(0, ·)∂Π(0, ·)
∂η

(

∂z

∂η

)−1

+ g = 0,

Π(0, ·) = (p(0, ·)/pref)
−R/Cp , (4.20)

p(0, ·) = ρRθ(0, ·)Π(0, ·).

These data are chosen to have zero horizontal pressure gradient, as in Sec-
tion 4.4. However, there is a non-zero gradient along the terrain-following
coordinate surfaces. The resulting ρ(0, ·) is used as a reference state, as in
the derivation of (3.37). The equations are then as follows:
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Given data at time t, the Exner pressure Π is calculated from a Pois-
son equation derived by enforcing the continuity equation at time t + δt.
This is a slight modification of the Helmholz equation derived by Davies
et al. (2005) as part of the semi-implicit integration scheme in the UM.
The resulting pressure is purely diagnostic and may not represent a realis-
tic thermodynamic pressure in places where the anelastic approximation is
inaccurate. It would be possible to derive a density from it using the equa-
tion of state, and use this density in the continuity equation (the fourth
equation of (4.21)). However, this could cause unrealistic behaviour when
the pressure is inaccurate, which is why a reference density has to be used
in (3.37) to ensure energetic consistency.
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The tests are carried out using the same geometry as in Section 4.4. The
length-scale is reduced by a factor of 100 to give a small-scale regime. The
ridge then has an O(1) aspect ratio. The length of the domain is now 20 km,
and the width of the ridge is 1.5 km. Values of ug at z = 0 were chosen
from 10 m s−1 up to 80 m s−1, giving Mach numbers up to 0.25. As in
Section 4.4, the experiments are run for a time inversely proportional to ug.
It is not useful to measure the errors in the initial evolution because of rapid
transients, so the errors have to be measured after a period of evolution. The
aim is to allow time for the adjustment to a quasi non-divergent solution, but
to use a time short enough for geostrophic adjustment to have a negligible
effect. Results are thus shown for times corresponding to 27 and 36 minutes
for ug = 10 m s−1. Two spatial resolutions were used, of 121 × 61 and
201 × 121 points.

In the first set of experiments, N2 is set to 0.01, as in Section 4.4.
Figure 4.13 shows the errors in the u field. These are consistent with
quadratic convergence except for very small Mach number where the differ-
ences asymptote to a non-zero value. This does not appear to be a function
of spatial resolution, though the differences at larger Mach number are sen-
sitive to the resolution.

Figure 4.14 shows the differences in the θ-field. These are more sensitive
to resolution, suggesting that numerical errors are also contributing. The
results are again consistent with a second-order increase in error with Mach
number, starting from a non-zero basic value.

In order to establish whether the residual error at small Mach number
is due to the effect of the non-constant θ in the initial data, we repeat the
experiments with N2 = 0.0001. Retention of a non-zero value of N2 allows
the effect on the convergence of θ to be estimated. Figure 4.15 shows the
errors in the u field, using the same scale as Figure 4.13. These are now
consistent with quadratic convergence to zero even for the smallest Mach
numbers plotted, and show very little sensitivity to resolution.

Figure 4.16 shows the differences in the θ-field. The scale is magnified by
a factor of 100, to allow for the reduced variations in θ in the initial data.
There is still a residual non-zero value of the error for small Mach number,
but it is 3 times smaller than in the case with N2 =0.01. The results remain
quite sensitive to the resolution, as in the more strongly stratified case.

Overall the results are consistent with the error estimate in Section 3.6.
The non-convergence for non-uniform θ means that the use of anelastic
equations for quantitative predictions should be treated with caution, as
should numerical methods which employ a reference state, unless the effects
of the reference state are removed by iteration as discussed in Section 3.2.
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Figure 4.13. Convergence of r.m.s. differences of u (m s−1)
between UM and anelastic solutions, plotted against Mach
number Ma. Thin line = best fit by quadratic polynomial
in Ma to differences between UM and anelastic solutions on
121 × 61 grid. Individual differences plotted as + symbols,
using two verification times for each Ma. Thick line = best
quadratic fit in Ma to differences between UM solutions on
201 × 121 grid and anelastic solutions. Individual differences
plotted as asterisks, using two verification times for each Ma.
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Figure 4.14. Convergence of r.m.s. differences of θ (deg K)
between UM and anelastic solutions, plotted against Mach
number. Resolutions and plotting conventions as in
Figure 4.13.
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Figure 4.15. Convergence of r.m.s. differences of u (m s−1)
between UM and anelastic solutions, with N2 =10−4,
plotted against Mach number Ma. Resolutions and plotting
conventions as in Figure 4.13.
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Figure 4.16. Convergence of r.m.s. differences of θ (deg K)
between UM and anelastic solutions, with N2 =10−4,
plotted against Mach number. Resolutions and plotting
conventions as in Figure 4.13.
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5. Discussion

The theme of this paper is that numerical methods for atmosphere models
need to be designed and evaluated using asymptotic limit solutions, rather
than exact solutions of the governing equations. This is because production
models fall short of adequately resolving the exact solution by several or-
ders of magnitude. A related theme is that substantial research is needed
on methods of averaging the equations. This has not been reviewed compre-
hensively in this paper but some key pieces of work have been discussed. An
important issue is the choice between Eulerian and Lagrangian averaging.

A number of the most important asymptotic limit solutions have been
described and their validity illustrated in computations. The emphasis has
been on nonlinear regimes, since analysis of linear regimes is well repre-
sented in the existing literature. The related optimal numerical methods
have been discussed. Not surprisingly, these mostly reflect current prac-
tice. The use of asymptotic limit solutions allows systematic justification
for these choices. It should also allow long-term error estimates to be made
for suitable numerical methods. There has been little work on that topic
so far.

The numerical tests, with the exception of the Eady problem, show the
expected convergence rates but to non-zero residuals. Some of these resid-
uals represent dependencies on the initial data or additional parameters
defining the flow. The others appear to represent a combination of nu-
merical errors, initialization issues, and uncertainty in predicting turbulent
flows. If these residuals are only significant for values of the dimensionless
parameters (Rossby and Mach numbers in the examples presented) which
are smaller than typical values in real data, then they will not be very sig-
nificant. An issue with the larger-scale tests, which requires further study
using observations, is to determine how prevalent symmetric instability ac-
tually is in the atmosphere and ocean on various scales, and whether this is
correctly reflected in the solutions given by production models.

The failure of either model to predict the Eady solution after the ini-
tial life-cycle is disappointing, since this is the example most relevant to
long-term prediction of weather systems. The results suggest that the La-
grangian conservation laws enforced by the geometric model are important
in retaining long-term accuracy. However, it is difficult to see how they
can be enforced in a production model. This remains an outstanding re-
search challenge. The example does, however, suggest the importance of
Lagrangian averaging in describing the physics of fronts.
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